4 Sampling 4. A . Sample Mean and central Limit Theorem Suppose we take a series of measurements from some population $(e.g.,\ le\ddot{g}$ ht, duration, etc .) Suppose the greatisty we are measuring is distributed with mean μ and variance $\frac{3^2}{2}$ The sequence of measurements can be modeled as a sequence of RUs K_{1} , K_{2} , \rightarrow K_{4} that are i.i.d. The n-th sample mean 3 the RV

We know that
\n
$$
E[\overline{K}_{u}]\cdot E[\overline{K}_{u}]\geq E[\overline{K}_{u}]\cdot\frac{1}{2}E_{\overline{K}}] = \frac{1}{u}E[\overline{K}_{\overline{K}}] = \frac{1}{u}u \cdot \mu = \mu
$$
\n
$$
Var(\overline{K}_{u}) = Var(\overline{K}_{u} \geq \overline{K}_{\overline{K}}) = \frac{1}{u}Var(\overline{K}_{\overline{K}}) = \frac{1}{u^{2}}u \cdot \overline{G}^{2} = \frac{1}{u} \overline{G}^{2}
$$
\nThat is,

. the standard deviation approaches O

This is the reason behind the weak law of large numbers:

$$
P[|\overline{\mathcal{L}}_u - \mu| > \epsilon] \longrightarrow 0
$$
 ($u \rightarrow \infty$)

for all possible bonneds $270.$

What is the **Shape of the Dismbukou of**
$$
\overline{K}_{u}
$$
?
\nProblem \overline{K}_{u} is **expected by the divisor by u.**
\nConsider **Instead**
\n
$$
\overline{W}_{u} := \frac{\overline{K}_{i} - \mu}{\sigma}
$$
\nThen $\overline{E} L \overline{Y}_{i} \overline{J} = O_{1} \overline{Var(Y_{i})} = Var(\frac{\overline{X}_{i} - \mu}{\sigma}) = \frac{1}{\sigma} Var(\overline{X}_{i}) = 1$
\nThe \overline{K}_{i} are i.i.d, so also the \overline{Y}_{0} are i.c.d.
\nLet $U_{u} := \frac{\sum_{i=1}^{u} Y_{i}}{\sqrt{u}} = \sqrt{u} \cdot \overline{Y}_{u} = \sqrt{u} \cdot 0 = 0$
\nThen $\overline{E} [U_{u}] = Var \overline{Y}_{u} = Var \overline{Y}_{u} = \overline{Var} \cdot 0 = 0$
\n
$$
Var(U_{u}) = Var \overline{Var} \overline{Y}_{u} = u \overline{Var} \overline{Y}_{u} = 1 - \frac{1}{2} \cdot 1 = 1
$$

The Central Limit Theorem (CLT)

The CLT says that the distributions of the Un, (i.e., the cdfs) couverge towards the cdf of the standard normal.

Theorem (Lindeberg-Lévy) [Central Limit Theorem]

let k_i be i.i.d. RUS with mean μ and variance 3^2 and let \bullet $\mathcal{U}_h := \frac{\partial u}{\partial} (\overline{\mathcal{X}}_u - \mu)$. Fn be the cdf of u_n Lie_y , $F_u(\omega) = P[U_u \subseteq x]$) \bullet \bullet be the cdf of $N(0,1)$.

They

 $f.a. \times c R$ $lim_{u\to\infty}$ $F_u(x) = \overline{\Phi}(x)$

Convergence in Distribution

This kind of convergence is called "convergence in distribution " , which is the weakest kind of convergence among RVs.

For instance, the **Weak law of** *Case Number* says that
$$
\overline{X}_{u} \rightarrow \mu
$$
 "in probability", which implies convergence

The CLT says,
$$
F_u(x) \rightarrow \Phi(x)
$$
, but this may be fast for
some x and slow for others.

In practice, convergence is faster for x close to O, that is , close to the mean , and slow if Kl ⁱ's large, i. e. , far away from the mean.

Interpretation and Application of the CLT Let k_i be i. r.d. Rus with mean μ and variance 3². Let S_n : = $\sum_{i \leq n} k_i$ be the sum of the E_i . The CLT says that for large n the normalised sum $\overline{\mathcal{L}}$ $\frac{1}{\sqrt{u}}(1-\mu\mu)$ has approximately ^a standard normal distribution . From that one can conclude that $f_n \sim \mathcal{N}(n \mu_1 n s^2)$ approximately, where the approximation is best around the mean $u\mu$. Probabilities of the values of fu can then be approximated by probabilities of a normally distributed RV .

Example 64: Au insurance company has 25,000 policy holders. Considering the yearly claim of a policy holder as a RU, the company has observed that • the mean of the claims is μ = ϵ 320 • the standard deviation is $s = \epsilon$ 540 What is the probability that the fotal yearly claim is $>$ \in 8.3 Mio ?

Example 64: Au insurance company has 25,000 policy holders. Considering the yearly claim of a policy holder as a RU, the company has observed that • the mean of the claims is $\mu = \epsilon$ 320 • the standard deviation is $s = \epsilon$ 540 What is the probability that the total yearly claim is > \in 8.3 Mio ? let E i be the yearly claim of policy holder i, and $S_{u} = \sum_{i=1}^{n} C_{i}$ be the yearly sum of claims, $u = 25,000$. \overline{e}_n = $\frac{1}{4}$ \overline{e}_n be the average of the claims. We want to know $P \sqsubset S_n >> J_n$ where $s = 8.3$ Mio.

From the CLT, we conclude that

$$
\mathcal{J}_{\mu} \sim \mathcal{N}(n \cdot \mu_1 n \varepsilon^2) \text{ apply}
$$

Hence

$$
P[S_{u}>s]=PI\frac{S_{u}-u\mu}{\sqrt{u}\sigma}>\frac{s-u\mu}{\sqrt{u}\sigma}]
$$

$$
\approx PIZ=\frac{S-u\mu}{\sqrt{u}}=1-\Phi(\frac{S-u\mu}{\sqrt{u}})
$$

$$
W = 25,000 + 320
$$
\n
$$
= 8 \times 10^{6}
$$
\n
$$
= 3 \times 10^{6}
$$
\n
$$
= 3 \times 10^{5}
$$
\n
$$
= 3 \times 10^{5}
$$
\n
$$
= 3 \times 10^{5}
$$
\n
$$
= 2.3 \times 10^{5}
$$

 $T \ln s$ $P [S_n > s] = 1 - \Phi(3.51) = 1 - 0.9998 = 0.0002$

Normal and Binomial Distribution

Corollary: Let
$$
k_i
$$
 be independent Bernoulli(p) RVs. Then

$$
u_{ud} \xrightarrow{Bivomial} 0 \sin i \omega \cos \omega
$$
\n
$$
let \xrightarrow{k} be \in u \text{ dependent Bernoulli}(p)
$$
\n
$$
\frac{u}{\sqrt{n} \cdot \sqrt{p \cdot (1-p)}}
$$
\n
$$
\Rightarrow \sqrt{p \cdot (q \cdot p)}
$$
\n
$$
from
$$

in distribution.

Rules of Thumb : A Binomial Chip) distribution is close to \bullet $\sqrt{((up, upp, np(1-p))}$) if both up>5, and <u>n(1-p)</u>>5

• Poisson(np) if
$$
up < 5
$$
 or $u(1-p) < 5$, and $u > 20$

Example 65: An airplane fits 150 passengers. On a busy route, only 30% of the people that buy a ticket take the plane. If the airline sells 450 tickets per flight, what is the probability that the plane is overbooked?

Example 65 : An airplane fits ¹⁵⁰ passengers . On a busy route, only 30% of the people that buy a ticket take the plane . If the airline sells ⁴⁵⁰ tickets per flight, what is the probability that the plane is overbooked ? The number of passenger P taking the plane is a binomial RV with mean ^u p and variance ⁿ per p, where ^u ⁼ ⁴⁵⁰ , ^p ⁼ 0.3 . Let s ⁼ ¹⁵⁰ be the number of seats available.

The plane is overbooked if

 $P > 150$.

We can approximate P by a RV $\mathcal{X} \sim \mathcal{N}(np, np$ (1-p). Then $P[PSS] = P[EE > Ste.s]$ § adjustment when translating ^a discrete *) into a constitutors problem = P $\left[\frac{\varkappa - \mu_p}{\sqrt{1-\mu_p}} \right]$ > $\frac{\varkappa - \mu_p}{\sqrt{1-\mu_p}}$ } = 1 - $\frac{1}{\sqrt{u}\sqrt{\mu(1-\rho)}}$ > $\frac{1}{\sqrt{u}\sqrt{\mu(1-\rho)}}$ $=$ $1-\overline{\Phi}\left(\frac{1}{\sqrt{u}\sqrt{\mu(1-\rho)}}\right)$ $=$ Λ - $\overline{\Phi}(1.59) = 1 - 0.944 = 0.056 = 5.6%$

 $E)$ called continuity correction