Exponential Functions Three concepts: We consider functions with the following proporties: 1) $f(x) = a^{x}$, $x \in Q$ (i.e., $x \text{ like } \frac{u}{u}, \frac{13}{9}, \dots$), for some a > 3(Exponentiation $a^{n}, a^{l}, a^{l} = \sqrt{a}, a^{o} = 1$ $1 = a^{-3} \cdot a^{-3} = a^{-3} = \frac{1}{a^{-3}} = \frac{1}{a^{-3}}$ $a^{-\frac{7}{3}} = \frac{7}{\sqrt{3}}$ 2) $f(x+y) = f(x) \cdot f(y) \cdot x, y \in \mathbb{R}$ Addition - uniltiplication homomorphism 3) $f'(x) = \alpha f(x)$, $x \in \mathbb{R}$ and f(0) = 1, for some $\alpha \neq 0$. Growth proportional to value $(e^{\alpha x})' = \alpha e^{\alpha x}$

We note that exponentiation can also be defined for real numbers as exponents. This, however, is only conceptually interesting, it does not give us a practical way to compute such powers. That will come later. If XER is a real number, then we can approving the it by rational numbers. That is, there is a sequence in such that $\lim_{n \to \infty} \Gamma_n = K$, or $\Gamma_u \to X$. Then we define $a^{\chi} := \lim_{n \to \infty} a^{r_n}$ For instance, this gives $5^{T} = lim (5^{3}, 5^{10}, 5^{14}, 5^{14})$

Implication 1)
$$\Rightarrow$$
 2)
If $f: R \rightarrow R$ is differentiable and for some $a \in R$
 $f(x) = a^{x}$, $x \in R$
 $f(x+y) = f(x) \cdot f(y)$, $x, y \in R$
Addition - unilliplication
homomorphism
Proof: By the properties of exponentiation, we have
 $f(x+y) = f(x) \cdot f(y)$, for all $x, y \in R$.

If f is differentiable, it is also continuous and the second equation holds also for xiy e R because addition and multiplication are continuous.

Implication 2) \implies 3) 17 f: R -> R is differentiable and $f(x+y) = f(x) \cdot f(y), x, y \in \mathbb{R}$ then there is a constant a e R such that and f(o) = 1. $f(x) = \alpha f(x), x \in \mathbb{R}$

Proof. First, we note that f(0) = 1. This is because

 $f(0) = f(0+0) = f(0) \cdot f(0)$

 $=7 \quad 1 = f(0)$

Next, we see what we can couchede about f':

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x) \cdot f(h) - f(x) \cdot 1}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{f(x) - f(h) - f(x) - 1}{h}$$
$$= \lim_{h \to 0} \left(\frac{f(h) - 1}{h} - f(x)\right)$$

$$= \left(\lim_{h \to 0} \frac{f(h) - f(\omega)}{h} \right) \cdot f(\kappa)$$
$$= \left(\frac{f'(\omega)}{h} \cdot \frac{f(\kappa)}{h} \right)$$

$$= f'(\mathcal{O}) \cdot f(\mathcal{A})$$

So, f'10) is the a we were looking for.

Implication $3) \Rightarrow 2)$ 17 f: R -> R is differentiable and there is a constant a e R such that and f(0) = 1 $f'(x) = \alpha f(x), x \in \mathbb{R}$ then $f(x+y) = f(x) \cdot f(y), x, y \in \mathbb{R}$

Proof: This argument is a bit lengthy. We first check that it is enough to prove the claim for $\alpha = 1$. From there we arrive at the power series of the exponential function and astam the homomorphism equation.

First: It's enough to consider
$$\alpha = \Lambda$$
.
Suppose that $g'(x) = \alpha g(x)$ and $g(o) = 1$.
We normalize g as f_i defined as $f(x) := g(\frac{1}{\alpha}x)$.
We get back g from f because $g(x) = g(\alpha \cdot \frac{1}{\alpha}x) = f(\alpha x)$.
Then $f'(x) = g'(\frac{1}{\alpha}x) \cdot \frac{1}{\alpha} = g(\frac{1}{\alpha}x) \cdot \frac{1}{\alpha} = g(\frac{1}{\alpha}x) = f(x)$.
Then $f'(x) = g'(\frac{1}{\alpha}x) \cdot \frac{1}{\alpha} = g(\frac{1}{\alpha}x) - \frac{1}{\alpha} = g(\frac{1}{\alpha}x) = f(x)$.
That is, f satisfies $f' = f$.
We also have $f(0) = g(\frac{1}{\alpha}o) = g(0) = 1$.
Suppose we can show that such an f also $schiftes$
 $f(x+\gamma) = f(\alpha(x+\gamma)) = f(\alpha(x+\alpha\gamma)) = f(\alpha(x) \cdot f(\alpha(\gamma)) = g(x) \cdot g(\gamma))$.
Then $g(x+\gamma) = f(\alpha(x+\gamma)) = f(\alpha(x+\alpha\gamma)) = f(\alpha(x) \cdot f(\alpha(\gamma)) = g(x) \cdot g(\gamma))$.
So, it suffices to consider $\alpha = 1$.

Second: What does flook like?

It cannot be a polynomial like $f(x) = a_0 + a_1 x^4 + \dots + a_n x^n$. This would yield $f^{(n+1)} = 0$. $f^{(n+1)}$ is the (n+1)-ty derivative

$$f(y) = a_0 + a_1 x' + a_2 x^2 + a_3 x^3 + \dots + a_n x'' + a_{n+1} x'' + f(y) = 0 + a_1 x'' + 2a_2 x'' + 3a_3 x'' + \dots + u \cdot a_n x'' + (u + 1)a_{n+1} x''$$

The scries
$$f'and f$$
 are the same iff they have the same coefficients: $a_1 = a_0$, $2a_2 = a_1, \dots, (n+1)a_{n+1} = a_n$.

That is, they satisfy the recurrence

$$a_{u+1} = \frac{1}{u+1} a_u$$
 with $a_0 = 1$.

The becurrence

$$a_{u+1} = \frac{a_u}{u+1}$$
 with $a_0 = 1$

leads to the values

$$a_0 = 1$$
, $a_1 = \frac{1}{1}$, $a_2 = \frac{1}{1\cdot 2}$, $a_3 = \frac{1}{1\cdot 2\cdot 3}$

and generally
$$a_{\mu} = \frac{1}{\mu}$$

The shape of
$$f$$
 is therefore
 $f(x) = \sum_{u=0}^{\infty} \frac{1}{u!} x^{u} = \sum_{u=0}^{\infty} \frac{x^{u}}{u!}$

This function is also known as the exponential function and it is often denoted as exp. We see, its form derives from the two couditions f'=f and f(o) = 1. Third: The exponential function satisfies f(x+y)=f(x).f(y).

We start with the right-hand side: $f(x) \cdot f(y) = \left(\sum_{i=0}^{\infty} \frac{x^{i}}{i!}\right) \cdot \left(\sum_{j=0}^{\infty} \frac{y^{j}}{j!}\right) \qquad \text{Reorganite the sum,} \\ \text{combine factors} \\ \text{combine factors} \\ \text{whose a powents} \\ \text{add up to } u, \\ \text{tor each } u. \end{cases}$

$$= \sum_{k=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{u} \binom{u}{k} x^{k} y^{k-k}$$
 Biusmid formula
$$= \sum_{k=0}^{\infty} \frac{1}{n!} (x+y)^{k} = \sum_{k=0}^{\infty} \frac{(x+y)^{k}}{n!} = f(x+y)$$

Implication 2) \implies 1) $f(x+y) = f(x) \cdot f(y), x, y \in \mathbb{R}$ then for some a ER $f(x) = a^{\chi}, \qquad \chi \in Q$ Proof. We have already shown that from our assumption it follows that • f(o) = 1. $1 = f(0) = f(x + (-r)) = f(x) \cdot f(-x)$ that be conclude from • $f(-x) = \frac{1}{f(x)}$.

Moreover,
•
$$f(m \cdot x) = f(x + \dots + x) = f(x + \dots + f(x)) = f(x)^{m}$$

 $m \text{ fines}$
 $f(m) = f(\frac{x}{n} + \frac{x}{n} + \dots + \frac{x}{n}) = f(\frac{x}{n})^{n}$
we conclude
 $n \text{ fines}$

•
$$f(\frac{x}{u}) = \sqrt{f(x)} = \frac{1}{u}$$

Hence, for every rational number
$$\frac{m}{n}$$
 we have
 $f(\frac{m}{n}) = f(m, \frac{\pi}{n}) = f(\frac{\pi}{n})^m = (f(\pi)^{-m})^m = f(\pi)^m$

So far we have seen that
$$f(x+y) = f(x) \cdot f(y)$$

$$f(x) = f(0)^{X}$$
, $X \in \mathbb{Q}$

For the special case of
$$f = exp$$
, that is, $f' = f$,
we have
 $f(1) = exp(1) = \sum_{n=0}^{\infty} \frac{1}{n!}$

So far we have seen that
$$f(x+y) = f(x) \cdot f(y)$$

implies $f(x) = f(0)^{X}$, $X \in \mathbb{R}$
For the special case of $f = exp$, that is, $f' = f$,
we have $f(x) = exp(x) = \sum_{n=0}^{\infty} \frac{1}{n!}$
We often denote the number $exp(x)$ simply as \mathbb{C} .
Then we have $e^{X} = exp(x)^{X} = exp(x) = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, $X \in \mathbb{R}$

Since exp is differentiable, (this was always our assumption) it is continuous on R, this equality also holds for XER.

If g satisfies
$$g'(x) = a g(x)$$
, then $g(x) = exp(ax)$,
as seen before, that is,
 $g(x) = \sum_{\mu=0}^{\infty} \frac{a^{\mu}x^{\mu}}{\mu!}$

We have exp(x) > 0 for x > 0 and $exp(-x) = \frac{1}{exp(x)}$, hence exp(x) > 0 holds also for x < 0.

That is, exp(4) = exp(x) > 0 for all XER.

Thus, exp is strictly monotonic and has an inverse function that we call log.

As the inverse of exp, the function log inherits the property

 $log(x \cdot y) = log(x) + log(y)$

The known laws for logarithms and exponents can all be derived from the development shown so far.