Exponential Functions Three concepts: We consider functions with the following proporties: 1) $f(x) = \alpha^x, x \in \mathbb{Q}$ (i.e., x like $\frac{u}{u}$, $\frac{13}{9}$). . .), for some a > ⁰ Exponentiation $a^{1}, a^{2}, a^{1/4} = \sqrt[4]{a}, a^{0} = 1$ $1 = a^{-3} \cdot a^3 = a^6 = a^2$ $3 = \frac{1}{a^3}$ $\frac{3}{1}$ $a^{-3} = \frac{1}{a^3}$
 $\frac{7}{3} = \frac{1}{3\sqrt{a^2}}$ 2) $f(x+y) = f(x) \cdot f(y)$, $x,y \in \mathbb{R}$ Addition - untiplication homomorphism 3) $f'(x) = a f(x)$, $x \in \mathbb{R}$ and $f(0) = 1$, for some $\alpha \neq 0$. Growth proportional to value like $(e^{\alpha x})^{\prime} = \alpha e$ a x

We will see that these three concepts are actually equivalent for differentiable functions . If ^a differentiable function f has one of these three properties , then it also has the other two .

We show that r) implies 2) 2) implies 3) 3) implies 2) 2) implies r)

We note that exponentiation can also be defined for real numbers as exponents. This, however, is only conceptually interesting , it does not give us a practical way to compute such powers. That will come Later. If $x \in \mathbb{R}$ is a real number, then we can approximate it by rational numbers. That is, there is a sequence in such that $\ln r_u = \kappa$, or $r_u \to \kappa$. $\frac{30.111}{4}$ is $\frac{1}{2}$ is $\frac{1}{2}$ Then we define a^{χ} := lim a r_u $u \rightarrow \omega$ For instance, this gives $5^{\frac{5}{10}}$ = $\ln 10^{\frac{5}{10}}$ ($5^{\frac{3}{10}}$, $5^{\frac{3}{100}}$, $5^{\frac{3}{100}}$, ...

.

\n
$$
\begin{array}{ll}\n \text{In place from } A) & \Rightarrow & 2 \\
\hline\n \text{If } f: \mathbb{R} \to \mathbb{R} \text{ is differentiable} & \text{and for some } a \in \mathbb{R} \\
\text{then} \\
\text{If } x > \mathbb{R} \text{ is a differentiable} & \text{Exponential}\\ \text{If } x > y < a^x, \\
\text{If } x > y > f(x) \\
\text{If } x > y > f(x) < f(y) \\
\text{If } x > y > f(x) < f(y) \\
\text{If } x > y > f(x) < f(y) \\
\text{If } x > y > f(x) < f(y) \\
\text{If } x > y > f(x) < f(y) \\
\text{If } x > y > f(x) < f(y) \\
\text{If } x > y > f(x) < f(y) \\
\text{If } x > y > \mathbb{R}\n \end{array}
$$
\n

If f is differentiable, it is also continuous and the second equation holds also for $x, y \in \mathbb{R}$ because addition and multiplication are continuous.

 $lmplicafor 2 \implies 3)$ If $f: \mathbb{R} \to \mathbb{R}$ is differentiable and $f(x+y) = f(x) \cdot f(y), x, y \in R$ then there is a constant a E R such that and $f(0) = 1$ $f'(x) = a f(x)$, $x \in R$

Proof. First, we note that $f(0) = 1$. This is because

 $f(0) = f(0+0) = f(0) \cdot f(0)$

 $=2$ $1 = f(0)$

Next , we see what we can conclude about f ' :

$$
f'(x) = lim_{h\to 0} \frac{f(x+h)-f(x)}{h}
$$

$$
= \lim_{h \to 0} \frac{f(x) \cdot f(h) - f(x) \cdot 1}{h}
$$

$$
h \rightarrow 0
$$

= $l m$
 $h \rightarrow 0$
 h
 h

$$
= \begin{pmatrix} \ln n & f(h) - f(0) \\ h \rightarrow 0 & h \end{pmatrix} . f(k)
$$

$$
= \int^1(\mathcal{O}) \cdot f(\mathfrak{C})
$$

So, $f'(0)$ is the α we were looking for.

 l mplication 3) \Rightarrow 2) $I\neq f: \mathbb{R} \to \mathbb{R}$ is differentiable and there is a constant $\alpha \in \mathbb{R}$ such that $f'(x) = a f(x)$, $x \in \mathbb{R}$ and $f(0) = 1$ then $f(x+y) = f(x) \cdot f cy)$, $x, y \in R$

Proof. This argument is a bit lengthy. We first check that it is enough to prove the claim for $\alpha = n$. From there we arrive at the power series of the exponential function and obtain the homomorphism equation .

First: If's enough to consider
$$
\alpha = 1
$$
.
\nSuppose that $\frac{\theta(x) = \alpha g(x)}{\alpha}$ and $\frac{\theta(x) = 1}{\alpha(x)} = \frac{\theta(1-x)}{\alpha}$.
\nWe not find $g(x) = \alpha g(x)$ and $\frac{\theta(x)}{\alpha} = \frac{\theta(1-x)}{\alpha}$.
\nWe get back $g + r \circ m + \alpha$ because $g(x) = g(a \cdot 1 \cdot x) = f(\alpha x)$.
\nThen $\int f'(x) = \frac{1}{2} \int (\frac{1}{2}x) \cdot \frac{1}{x} = \frac{1}{2} \int g(\frac{1}{2}x) \cdot \frac{1}{x} = g(\frac{1}{2}x) = f(x)$.
\nthat $\alpha + \alpha$ takes $f' = f$.
\nWe also have $f(\alpha) = g(\frac{1}{\alpha}\alpha) = g(\alpha) = 1$.
\nSuppose we can show that such $\alpha + \alpha$ is this is
\n $\frac{1}{2}(x + y) = f(\alpha) \cdot f(y)$.
\nThen $g(x+y) = f(\alpha y + y) = f(\alpha x + \alpha y) = f(\alpha x) \cdot f(\alpha y) = g(x) \cdot g(y)$.
\nSo, if suffices to consider $\alpha = 1$.

Second: What does f look like?

It cannot be a polynomial like $f(x) = \alpha_0 + a_1 x^1 + \cdots + a_n x^n$ $f^{(4+1)}$ is the $(4+1)$ -th derivative This would yield $f^{(n+1)} = 0$.

Let us assume that f has a powers, i.e., f is
an in finitely long polynomial
$$
f(x) = a_0 + a_1x^1 + \dots + a_nx^n + \dots
$$

What does that tell us about the coefficients a_n ?

$$
f(y) = a_{0} + a_{1}x^{1} + a_{2}x^{2} + a_{3}x^{3} + \cdots + a_{u}x^{u} + a_{u+1}x^{u+1}
$$

 $f(y) = 0 + a_{1}x^{0} + 2a_{2}x^{1} + 3a_{3}x^{2} + \cdots + u \cdot a_{u}x^{u+1} + (u+1) a_{u+1}x^{u}$

The series
$$
f'
$$
 and f are the same iff the value the sum
coefficients: $a_1 = a_0$, $2a_2 = a_1$, ..., $(n+1)a_{n+1} = a_n$.

That is, they satisfy the recurrence

$$
a_{u+1} = \frac{\lambda}{u+1} a_u \text{ with } a_0 = \lambda.
$$

The recurrence

$$
a_{u+1}=\frac{a_{u}}{u+1}
$$
 with $a_{0}=1$

leads to the values

$$
a_0 = 1
$$
, $a_1 = \frac{1}{1}$, $a_2 = \frac{1}{12}$, $a_3 = \frac{1}{12.3}$

and generally

$$
a_u = \frac{1}{u}
$$

The shape of f is therefore
\n
$$
f(u) = \sum_{u=0}^{\infty} \frac{1}{u!} x^{u} = \sum_{u=0}^{\infty} \frac{x}{u!}
$$

This function is also known as the exponential function and it is often decested as exp. We see, its form deriver from the two conditions $f' = f$ and $f(0) = 1$.

Third: The exponential function satisfies $f(x+y) = f(x) \cdot f(y)$.

We start with the right-hand side: $f(y) \cdot f cy) = \left(\sum_{i=0}^{\infty} \frac{x^{i}}{i!}\right) \cdot \left(\sum_{j=0}^{\infty} \frac{y^{j}}{j!}\right)$ Reorganite the sum, combine factors whose exponents $=\frac{\infty}{\sum_{N=0}^{\infty}}\sum_{k=0}^{n} \frac{x^{k}}{k!}\frac{y^{k-k}}{(n-k)!}$ for each u.

$$
=\sum_{u=0}^{\infty}\frac{1}{u!}\sum_{k=0}^{u}\frac{u!}{k!(u-k)!}x^{k}y^{u-k} \qquad \text{such by } 1 = \frac{n!}{u!}
$$

$$
=\sum_{u=0}^{\infty}\frac{1}{u!}\sum_{k=0}^{u} {u \choose k}x^{k}y^{u-k} \text{Biusmid formula}
$$

$$
=\sum_{u=0}^{\infty}\frac{1}{u!}(x+y)^{u}=\sum_{u=0}^{\infty}\frac{(x+y)^{u}}{u!}=\frac{f(x+y)}{h!}
$$

 l mplication $2) \Rightarrow 1$ $|f|$ $f(x+y) = f(x) \cdot f(y), x, y \in R$ then for some a ER $f(x) = a^x$ $x \in \mathbb{Q}$ Proof. We have already shown that from our assumption it follows that • $f(0) = 1$. $1 = f(0) = f(x + (-c)) = f(x) \cdot f(-x)$ that We conclude from $f(-x) = \frac{1}{f(x)}$.

Moreover,
\n
$$
f(m \cdot x) = f(x + \cdot\cdot\cdot + x) = f(x) \cdot\cdot\cdot f(x) = f(x)^{m}
$$

\n $f(\frac{x}{n}) = f(\frac{x}{n} + \frac{x}{n} + \cdot\cdot\cdot + \frac{x}{n}) = f(\frac{x}{n})^{m}$
\nwe conclude
\n $f(\frac{x}{n}) = \sqrt{f(x)} = \frac{f(x)}{x}$

$$
\int f(\frac{x}{a}) = \sqrt[n]{f(x)} = f(x)
$$

Hence, for every rational numbers
$$
\frac{u}{u}
$$
 we have
\n $f(\frac{u}{u}) = f(m \cdot \frac{1}{u}) = f(\frac{1}{u})^{u} = (f(n)^{d(u)})^{u} = f(n)^{u(u)}$

So far we have seen that
$$
f(x+y) = f(x) \cdot f(y)
$$

$$
implies
$$
 $f(x) = f(0)^{x}$ $y \in \mathbb{Q}$

For the special case of
$$
f = exp
$$
, that is, $f' = f$,
we have $f(1) = exp(1) = \sum_{n=0}^{\infty} \frac{1}{n!}$

We often develop the number
$$
\exp(1)
$$
 $\sin p/y$ as e.
Then we have
 $e^x = exp(x)^x = exp(x) = \sum_{u=0}^{\infty} \frac{x^u}{u!}$, $x \in \mathbb{Q}$

Since exp is differentiable , (this was always our assumption) it is continuous on R , this equality also holds for $x \in R$.

If
$$
9
$$
 $845fies$ $9'(x) = xg(x)$, then $g(x) = exp(ax)$,
as $secx$ $before$, $44 is$,

$$
g(x) = \sum_{u=0}^{\infty} \frac{x^{u}x^{u}}{u!}
$$

We have $\ell x \rho(x) > 0$ for $x > 0$ and $\ell x \rho(-x) = \frac{1}{\ell x \rho(x)},$
hence $-\ell x \rho(x) > 0$ holds also for $x < 0$.

That is, $exp^{\prime}(\alpha) = exp(x) > 0$ for all $x \in \mathbb{R}$.

Thus, exp is strictly monotonic and 425 au 14 ves se function that we call log.

As the inverse of exp, the function log inherits the property

 $log(x \cdot \gamma) = log(x) + log(y)$

The known laws for logarithms and exponents can all be derived from the development shown so far.