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Disclaimer

T H I S M A N U S C R I P T C O N TA I N S the lecture notes for the course on Proba-

bility Theory and Statistics at the Free University of Bozen-Bolzano. Most

of the content is based on the Sheldon M. Ross’s book.1 There are currently
1

five editions of that book; any of them should suffice for the needs of the

course.2 2 The third edition is available for free at
this location.This manuscript does not replace the material presented on the black-

board during the course. It may (in fact, it does) contain errors, typos, and

miss relevant details discussed at the classroom.3 Use it with care. The
3 Needless to say, all errors found here are
my fault, and my fault only. If you notice
any mistake, please let me know so that I
can fix it.

best advice is for you to attend the lecture and take notes by yourself, and

use this text as supporting material.

Background information and other supplemental material like hand-

outs, exercises, and code are provided at the OLE for the course. If you

have not yet registered, do it now.

http://www.r-5.org/files/books/computers/algo-list/statistics/Sheldon_Ross-Introduction_to_Probability_and_Statistics-EN.pdf
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Introduction to Probability Theory

P RO B A B I L I T Y T H E O RY I S a means for measuring and speaking about the

uncertainty about occurrences of events. The event will happen or not,

but we do not know which will be the case. Suppose for example that I roll

a die. The die will necessarily show one face, but we do not know which

one; the event “the die will show a 6” is uncertain.

Probabilities quantify this uncertainty. In this case, we would say some-

thing like “the probability of the die showing a 6 is 1/6,” since there are six

possible outcomes that we consider equally likely. There are two ways to

understand this statement:

• if we repeat the experiment a large enough number of times, then in 1/6

of them the outcome will be a 6;

• we believe that there is a 1 in 6 chance of this specific roll landing on 6.

The first is the frequentist view. This view suggests that a probability is

intrinsic to the event, and it can be studied and determined by repeat-

ing an experiment. The second is the subjective (or Bayesian) view, where

the probability refers to the belief of the agent stating the probability. Al-

though these two views have some deep philosophical differences, they do

not affect the study of the mathematical properties of probabilities. So we

often disregard these differences when studying the theory of probabilities

formally.4 4 An accessible discussion on the Bayesian
view, and its importance in modern statis-
tics is available here.

Events

W E W I L L D E A L with experiments whose outcome is uncertain, but where

the set of all possible outcomes is known. This set of all possible outcomes

is called the sample space, denoted by S . When rolling a die, the sample

space is S = {1, . . . ,6}. Sample spaces may be very simple, or very complex.

For example, in a race the sample space may describe all the possible or-

derings in which the participants can finish. Indeed, S may be infinite.

Any subset of the state space is called an event. If the outcome of the

experiment is contained in a given event E , then we say that E occurred.

For example, the event of the die rolling an even number is E = {2,4,6}.5 5 Obviously, more complex events are pos-
sible for other spaces.Since events are sets, we can define new events through set operations

over other events. Given two events E and F , their union (E [F ), inter-

section (EF ), and complement (E ) are also events.6 In our dice example, 6 For a brief introduction to set theory and
Venn diagrams, see the relevant handout.

https://www.the-tls.co.uk/articles/public/thomas-bayes-science-crisis/
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if E = {2,4,6} is the event of rolling an even number, and F = {2,3,5} refers

to the event of rolling a prime number, then

• E [F = {2,3,4,5,6}: rolling an even or a prime number;

• EF = {2}: rolling a prime even number; and

• E = {1,3,5}: rolling an odd number.

It is possible that an event is empty, for example by taking the intersection

of two events that do not share any outcomes like {2} and {3}. This event

is denoted by ;; e.g. {2}{3} = ;. If EF = ;, then E and F are mutually

exclusive. Notice that the whole sample space is also an event, and that

S =;.7 Just as with sets, we can consider inclusions between events, too. 7 In terms of language, we can see the
union as a (non-exclusive) or, the intersec-
tion as an and, and the complement as a
no.

E is contained in F if all outcomes in E are also in F . In this case, we

write E µ F or F ∂ E . If E µ F and F µ E , then E and F are equivalent

(E ¥F ). For example, rolling a two is contained in rolling an even number,

and is equivalent to rolling a prime even number.

Axioms of Probability

R E C A L L T H AT T H E F R E QU E N T I S T view states that if we repeat an experi-

ment repeatedly under the exact same conditions, then the proportion of

times in which the outcome belongs to a given event E will converge to a

constant, which reflects the probability of E .

From a mathematical point of view, for every event E over a sample

space S there is a number, called the probability of E and denoted as P (E )

that satisfies the following three axioms:

Axiom 1 0 ∑ P (E ) ∑ 1;

Axiom 2 P (S ) = 1; and

Axiom 3 For any sequence of mutually exclusive events E1,E2, . . .,8 and for 8 That is, events such that Ei E j =; when-
ever i 6= j .any n 2N it holds that P (

Sn
i=1 Ei ) =Pn

i=1 P (Ei ).

The first axiom says that the probability of any event is always a number

between 0 and 1. Axiom 2 gives a completeness statement on probabili-

ties: the probability of observing any outcome from the sample space is

always 1. The last axiom shows how to aggregate the probabilities of mu-

tually exclusive events: the probability of their union is always the sum of

their individual probabilities.

The frequentist view of probabilities clearly satisfies these three axioms:

for any event E , the proportion (or frequency) of times in which a repeated

experiment falls in an outcome from E is necessarily between 0 and 1;

in every repetition of the experiment the outcome belongs to the sample

space S ; and if two events E and F do not have any outcome in common,

then the proportion of the time in which the outcome is in E or in F is the

sum of their respective frequencies. As an example of this last axiom, sup-

pose that E is the event where a roll of a die falls in an even number, and

F that it falls on the number 1. Then, we expect E to hold half (50 per-

cent) of the time, and F 1
6 -th of the time. Then E [F should be observed

approximately 66% of the time.



I N T RO D U C T I O N TO P RO B A B I L I T Y T H E O RY 7

These simple axioms allow us derive many properties of probabilities,

and understand them formally. We start with two simple propositions that

already showcase some interesting characteristics of the theory.

Proposition 1. For every event E , P (E ) = 1°P (E ).

Proof. By definition, E and E are disjoint, and S = E [E . Using Axiom 3,

it follows that P (S ) = P (E [E ) = P (E )+P (E ). By Axiom 2 it also follows

that P (S ) = 1, and hence P (E ) = 1°P (E ).

In other words, the probability of an event not occurring is always one

minus the probability of it occurring. For example, if the probability of

rolling an even number in a die is 0.6, then the probability of rolling an

odd number must be 0.4.

Notice that Axiom 3 provides a means for computing the probability of

the union of two or more events, but only if they are mutually exclusive.

We often need to compute such probabilities for events that are not nec-

essarily disjoint. We can do that, as longs as we know the probability of the

intersection.

E F
I II III

Figure 1: Three relevant regions in a Venn
diagram.

Proposition 2. For every two events E , F , P (E[F ) = P (E )+P (F )°P (EF ).

Proof. To help in this proof, consider the Venn diagram in Figure 1. The

three regions I, II, and III are mutually exclusive. Hence, it follows that

P (E [F ) = P (I)+P (II)+P (III);

P (E ) = P (I)+P (II);

P (F ) = P (II)+P (III).

Thus, P (E[F ) = P (E )+P (F )°P (II). Since II ¥ EF , this finishes the proof.

Example 3. 23 percent of adults drink beer; 7 percent drink wine, and

2 percent drink both, beer and wine. What percentage of people drink

neither beer nor wine?

Solution. To know how many people drink neither beer nor wine, it suf-

fices to know how many people drink at least one of these beverages (the

desired event is the complement of this one). Let E be the event of a per-

son drinking beer, and F the event of drinking wine. The probability of

drinking one of them is9 9 To see this in a different way, think: how
many people drink only beer? These are
those that drink beer, minus those that
drink beer and wine: P (E )°P (EF ). Those
that drink only wine are P (F ) ° P (EF ).
So, the people that drink beer or wine are
those that drink only beer, plus those that
drink only wine, plus those that drink both:
P (E )°P (EF )+P (F )°P (EF )+P (EF ).

P (E [F ) = P (E )+P (F )°P (EF ) = 0.23+0.07°0.02 = 0.28.

The probability of a person being abstemious is 1°0.28 = 0.72. 4

A N OT H E R I M P O RTA N T N OT I O N when speaking about uncertainty and

probability is that of odds.

Definition 4. The odds of an event E is defined by P (E )
P (E )

= P (E )
1°P (E ) .

Intuitively, the odds of an event E tells us how much more likely it is

that E occurs than that it does not occur. If the odds of E is greater than 1,

then it is more likely to see E than not; and vice versa if it is smaller than 1.
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For example, if rolling a 2 in a die has probability P (E ) = 1
6 , then the odds

of this event is 1
6 / 5

6 = 1
5 . Consequently, it is five times more likely not to

see a 2 than it is to roll the 2. In this case, we say that “the odds are 1 to 5

against the event E .”10 10 Or, dually, in favour of E .

Uniformity

T H E R E A R E M A N Y C A S E S where it is natural to assume that every point in

the sample space S is equally likely to occur. If the sample space is finite,

(for example, if S = {1, . . . ,n} for some n 2N), then this means that

P ({1}) = . . . = P ({n}) = p.

Using Axioms 2 and 3, it follows that Axioms of probability:

1. 0 ∑ P (E ) ∑ 1

2. P (S ) = 1

3. P (
Sn

i=1 Ei ) = Pn
i=1 P (Ei ) if Ei s are mu-

tually exclusive.

1 = P (S ) = P ({1})+ . . .+P ({n}) = np,

and hence for every i , P ({i }) = p = 1
n . That is, every outcome has the same

probability of occurring determined by the total size of the sample space.

We can use Axiom 3 again to generalise this result to arbitrary events.

For an event E , let #E denote the number of elements (outcomes) in E .

If all outcomes are equally likely to occur in a sample space with n ele-

ments,11 then 11 We often refer to this case as having a
uniform sample space.

P (E ) = #E

n
.

That is, the probability of E is the proportion of elements in the sample

space that belong to E .

For that reason, it is often important to be able to count the number

of different ways in which an event may occur. One very helpful rule for

counting is the basic principle of counting.

Principle (Basic Principle of Counting). If two experiments are performed,

such that Experiment 1 can result in any of m different outcomes, and for

each of them Experiment 2 may result in any of n outcomes, then together

there are mn different possible outcomes for the two experiments.

To show that this is the case, it suffices to enumerate all possible out-

comes of the two experiments, arranging them in a matrix where every

row corresponds to the outcome of Experiment 1, and every column to

the outcome of Experiment 2. This matrix has overall mn elements (see

Figure 2).

(1,1) (1,2) . . . (1,n)
(2,1) (2,2) . . . (2,n)

...
...

. . .
...

(m,1) (m,2) . . . (m,n)

Figure 2: Possible outcomes for the Basic
Principle of Counting

Example 5. A drawer contains 8 black socks and 6 white socks. We “ran-

domly” take two socks from the drawer. What is the probability of them

not forming a pair?12 12 That is, we want the probability of the
two selected socks having different color.

Solution. We first measure the size of the sample space: the possible out-

comes of removing two socks from the drawer. There are 14 socks origi-

nally inside. First we can choose any of those 14 socks, and then any of the

13 remaining ones. Overall, there are 14 ·13 = 182 possible combinations.

In order to not have a pair, we have to extract first a black one followed by a

white one (8 ·6 = 48 combinations) or first a white one followed by a black
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one 6 ·8 = 48 combinations). Hence, assuming that each combination of

the sample space is equally likely to occur,13 we see that the probability is 13 That is what we often mean when saying
that an experiment is done “randomly.”48+48

182 = 96
182 º 0.53.

Obviously, the basic principle of counting can be generalised to cases

where more than two experiments are performed. If r experiments are

performed, such that Experiment 1 can result in any of n1 different out-

comes, and for each of them Experiment 2 may result in any of n2 out-

comes, and so on, then together there are n1 ·n2 · · ·nr different possible

outcomes for the r experiments.

Consider for example the question of counting the number of ways in

which a collection of n different objects can be organised over a line. For

a small enough n, we can find this number through enumeration: all the

linear ordering of the letters a,b, and c are abc, acb, bac, bca, cab, and

cba; that is, there are 6 such orderings. We often call each of these order-

ings a permutation. There are six permutations on any set of three objects.

Rather than enumerating them all, which becomes impossible (or at least

tedious) as the number of objects grows, one can also count the number

of permutations using the basic principle: the first object in the permuta-

tion may be any of 3 choices, the second any of the remaining 2 choices,

and the last one is determined by the previous outcomes (that is, only one

choice remains). In other words, there are 3 ·2 ·1 = 6 permutations.

If instead of 3 we have n objects, then the same argument can be used

to conclude that there are n(n °1)(n °2) · · ·3 ·2 ·1 different permutations

of them. This expression is known as n factorial and denoted by n!.14 14 That is, n! = n(n °1)(n °2) · · ·3 ·2 ·1. For
the sake of completeness, we define 0! := 1.

Example 6. We want to organize in a bookshelf 10 books, which are di-

vided in the following subjects: 4 are computer science, 3 are mathemat-

ics, 2 are statistics, and 1 is history. If we want all the books from the same

subject to appear together, how many different arrangements are possi-

ble?

Solution. First we consider the number of possible different permutations

of the subject matters: since there are 4 different subjects, we can choose

any of 4! different orderings of them. Once that we have chosen the order

of the subjects, we must choose the order of the books within the subject.

The CS books allow 4! different ordering, the mathematics ones have 3!
orders, statistics 2!, and the history book has only 1 = 1! ordering. Thus,

overall there are 4!4!3!2!1! = 6,912 possible ways to arrange the bookshelf

keeping books from the same subject together.

Example 7. A course has 5 male and 3 female students. After an exam,

all students are ranked according to their performance. Assuming that the

scores of the exams are all different, (a) how many different rankings are

possible? (b) If all rankings are equally likely, what is the probability of

women getting the 3 highest scores?

Solution. (a) There are 8 people taking the test, so there are 8! = 40320

possible rankings. (b) There are 3! rankings between the female students,

and 5! rankings among males; thus through the basic principle of count-

ing, there are 5!3! rankings where the first ranked are females. The desired

probability is then 5!3!
8! = 3·2·1

8·7·6 = 1/56.
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R AT H E R T H A N O R D E R I N G the objects in a collection with n elements, we

sometimes want to count the number of groups with r objects that can

be formed. For instance: how many groups of 3 elements can be formed

with the five items A,B ,C ,D , and E? One way to solve this problem is the

following. We have 5 ways to select the first element, 4 to select the second,

and 3 to select the third.± Thus, there are 5 ·4 ·3 = 60 ways of selecting the ±Do you understand why?

group of 3 objects when the order in which they are selected is relevant.

Notice, however, that if we are only interested in the groups of objects,

then this method counts each group 6 times.15 Thus, the total number of 15 For example, if the group selected is
A,B ,C , then it will count as different the
cases where we extract ABC , and where we
extract C B A.

groups that can be formed (ignoring the ordering) is 5·4·3
3·2·1 = 10.

In general, there are n(n°1) · · · (n°r+1) different ways to obtain groups

of r elements from a collection of n objects, if the order in which they are

extracted is relevant. Since each group is counted r ! times through this

method, when the order is not relevant there are

n(n °1) · · · (n ° r +1)
r !

= n!
(n ° r )!r !

groups of r elements from a collection of n objects.

Definition 8. Let r ∑ n. The combinations of r objects in n is
√

n
r

!

:= n!
(n ° r )!r !

.

Again,
°n

r

¢
is the number of groups of size r than can be extracted from a

collection of n elements, when their ordering is not important; e.g., there

are
°7

2

¢
= 7·6

2·1 = 21 different pairs that can be selected from a group of 7

people. Recall that 0! = 1. Then
°n

0

¢
=

°n
n

¢
= 1.

Example 9. Five people are selected randomly from a group containing 5

men and 8 women. What is the probability that 3 women and 2 men are

chosen?

Solution. By random selection we mean that each of the
°13

5

¢
possible com-

binations is equally likely. There are
°5

2

¢
possible combinations of 2 men,

and
°8

3

¢
of three women. From the basic principle of counting, the proba-

bility of this selection is then
°5

2

¢°8
3

¢

°13
5

¢ = 5 ·4 ·8 ·7 ·6 ·5!
13 ·12 ·11 ·10 ·9 ·2 ·3 ·2

= 8 ·7 ·5 ·2
13 ·11 ·9

= 560
1287

. 4

Example 10. If we randomly select k elements from a collection of n ob-

jects, what is the probability that a given object is among the k selected?

Solution. There is one way of choosing the selected item, and
°n°1

k°1

¢
ways

of selecting k ° 1 elements from the remaining objects in the collection.

From the basic principle of counting, there are 1 ·
°n°1

k°1

¢
different subsets

of k of the n elements that include the selected one. Since the total possi-

ble choices are
°n

k

¢
, the probability that a particular object is among the k

selected is±
±What is the probability that, in a group of
10 people, they all have a different birth-
day?

°n°1
k°1

¢
°n

k

¢ = (n °1)!(n °k)!k!
(n °k)!(k °1)!n!

= k
n

. 4
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Conditional Probability

O N E O F T H E F U N D A M E N TA L notions in probability theory is that of con-

ditional probabilities. Conditional probabilities are a way of measuring

uncertainty when some additional information (or evidence) is available:

it allows us to update our beliefs based on some previous observations

from the world. However, they are also useful by themselves, as one can

often simplify a problem of computing a probability by considering the

condition of a secondary event occurring or not.

To illustrate conditional probabilities, suppose that we roll a pair of

dice. The sample space of this experiment is the set containing 36 out-

comes S = {(i , j ) | 1 ∑ i , j ∑ 6}, where (i , j ) refers to the outcome where

the first die lands on i and the second on j . If each outcome is equally

likely to occur, each of them has probability 1/36.16 Suppose that we ob- 16 We say that the dice are fair.

serve that the first die landed on 3. What is the probability that the sum of

the two dice is exactly 8?

Since we already know that the first die landed on 3, there are 6 possible

outcomes remaining for our experiment: (3,1), (3,2), (3,3), (3,4), (3,5), and

(3,6). In addition, as originally each of these outcomes was equally likely,

the same should hold for this restricted setting; that is, given that the first

die landed on 3, each of these outcomes now has probability 1
6 .17 To con- 17 In fact, the (conditional) probability of

all the other 30 events is now 0, since they
cannot happen, given our evidence.

clude, the probability of the sum being 8 is then the probability of (3,5),

which is 1
6 .

Let E and F denote the event that the sum of the dice is 8, and the

event that the first die lands on 3, respectively. Then, what we have just

computed is called the conditional probability of E given F , which is de-

noted by P (E |F ).

To define the general notion of conditional probability, we follow the

same intuition showcased by this example. Given that the event F holds,

in order to observe E we in fact need to observe both events simultane-

ously; that is EF . However, since F is already known, we can consider it

as the new sample space (all outcomes out of it are now impossible) and

hence the probability of observing E becomes the probability of EF rela-

tive to that of F .

Definition 11. Let E and F be two events over the same sample space,

such that P (F ) > 0. The conditional probability of E given F is

P (E |F ) = P (EF )
P (F )

Notice that this definition only makes sense if P (F ) > 0. In fact, given

our intuition that F is an observed evidence, it is reasonable to make such

an assumption, as we do not expect to observe an event of probability 0.

Although we originally motivated conditional probabilities as a way to

update beliefs in the presence of evidence,18 Definition 11 is also consis- 18 Following the subjective view

tent with the frequentist view. Suppose that an experiment is repeated a

large number n of times. Since P (F ) expresses the proportion of times

where F is observed, this event will occur approximately nP (F ) times.

Likewise, nP (EF ) times E and F will both happen. Thus, out of the ap-
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proximately nP (F ) experiments whose outcome is in F , nP (EF ) also be-

long to E . In other words, for the experiments in F , the proportion whose

outcome is also in E approximates nP (EF )
nP (F ) = P (EF )

P (F ) . This approximation

gets tighter as the number of repetitions of the experiment increases.

Example 12. Suppose that a box contains 4 defective (do not work), 8 par-

tially defective (work only briefly), and 20 working transistors. We choose

one of them randomly, and use it. If it does not fail immediately, what is

the probability that it is a working transistor?

Solution. Since the transistor did not fail immediately, we know that it is

not one of the 4 defective ones. So we need to compute

P (correct | defective) = P (correct,defective)

P (defective)
= P (correct)

P (defective)
,

where the last equation holds because every correct transistor is necessar-

ily non-defective. Since the transistor was chosen randomly,19 we have 19 Each transistor is equally likely to be
chosen.

P (correct | defective) =
20
32
28
32

= 5
7

. 20 4 20 Notice that the same probability can be
computed through counting: since the
transistor is not defective, the problem re-
duces to computing the probability that a
transistor, chosen at random from a box
with 20 correct and 8 partially defective
transistors, is correct. This is, of course,
20
28 .

Example 13. You toss a coin twice, and on each throw you bet 5( that it

will fall on ‘heads.’ Knowing that you won at least one of the bets, what is

the probability that you won 10(? (Assume that the coin is fair).

Solution. The sample space for the two coin tosses can be represented as

S = {(h,h), (h, t ), (t ,h), (t , t )}.21 You win 10( if both tosses land on heads; 21 Where (h, t ) represents that the first toss
was heads, and the second tails.call this event E . If F denotes the event that at least one toss is heads, then

the desired probability is

P (E |F ) = P (EF )
P (F )

= P ({(h,h)})
P ({(h,h), (h, t ), (t ,h)})

= 1/4
3/4

= 1
3

. 4

The equation for conditional probabilities from Definition 11 can be

rewritten as P (EF ) = P (E | F )P (F ).22 This variation is helpful for com- 22 In fact, to avoid the need to require
P (F ) > 0, conditional probabilities are of-
ten defined just using this variant.

puting probabilities of intersections of events, if the conditional probabil-

ities are known.

Example 14. Your favourite football team has a 20% chance of reaching

the final game, and if it does, then it has a 50% chance of winning. What is

the probability of the team becoming the champion?

Solution. Let F be the event that the team reaches the final game, and E

the event that it wins it. Then the probability of it being the champion is

P (EF ) = P (E |F )P (F ) = 0.5 ·0.2 = 0.1. 4

Bayes’ Formula

E F

EF EF

Figure 3: E = EF [EF .

F O R A N Y T W O E V E N T S E and F , E can be equivalently expressed as a

union EF [EF (see Figure 3). Indeed, any outcome in E must either be

in F or in F , and hence also in the intersection of those events with E .

Since EF and EF are mutually exclusive, Axiom 3 entails that

P (E) = P (EF )+P (EF ) = P (E |F )P (F )+P (EF )P (F ). (1)
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This means that the probability of E is a weighted sum of the conditional

probabilities over any other event F and its complement F , where the

weights are given by the relative probabilities of the conditioning events

to happen. This is very useful, because it allows to find probabilities by

first conditioning relative to another event happening or not. There are

many instances where this approach allows us to compute probabilities

that would, otherwise, be impossible.

Example 15. There exist two kinds of people: cautious, and risk-takers.

Within a one-year period, cautious people have an accident with proba-

bility of 0.2, while for risk-takers this probability is 0.4. If 30% of the pop-

ulation is risk-taker, what is the probability that a randomly chosen indi-

vidual has an accident in this one-year period?

Solution. We condition over the chosen individual being a risk-taker or

not. Let E be the event that the individual has an accident in the one-year

period, and F the event that they are risk-takers.23 Then, 23 F means that they are cautious.

P (E ) = P (E |F )P (F )+P (E |F )P (F ) = 0.4 ·0.3+0.2 ·0.7 = 0.26 4

T H E F O R M U L A I N E QUAT I O N (1) is useful not only for computing prob-

abilities of events by themselves, but also to update initial probability as-

sessments in the presence of additional or new information. We show how

this works with an example.

Example 16. Consider again Example 15, and suppose that the randomly

chosen individual has an accident. What is the probability that they are a

risk-taker?

Solution. Remember that, originally (lacking any further evidence) the in-

dividual has a 30% probability of being a risk-taker (P (F ) = 0.3). However,

given the new information that they had an accident, we can re-evaluate

this probability as follows:

P (F | E ) = P (EF )
P (E )

= P (E |F )P (F )
P (E )

= 0.3 ·0.4
0.26

= 6
13

º 0.4615. 4

T H I S S A M E F O R M U L A24 can be generalised by allowing for a more fine- 24 In equation (1)

grained partition of the sample space as follows. Let F1, . . . ,Fn be a parti-

tion of the sample space S .25 In terms of events, this means that exactly 25 F1, . . . ,Fn is a partition of the space S

if they are mutually exclusive events andSn
i=1 Fi =S .

one of these Fi s must occur and, as before, E ¥ Sn
i=1 EFi . Since these

events are mutually exclusive, we get

P (E ) =
nX

i=1
P (EFi ) =

nX

i=1
P (E |Fi )P (Fi ). (2)

That is, P (E ) can be computed by first conditioning over a partition of the

sample space, and computing a weighted average of the results, where the

weight corresponds to the probability of each of the events Fi . Notice that

the original formula is just a special case of this: G and G form a partition.

Suppose that we know that E happened, and we are interested in know-

ing which of the events in the partition was observed. Using equation (2)
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we get

P (F j | E ) =
P (EF j )

P (E )
=

P (E |F j )P (F j )
Pn

i=1 P (E |F j )P (F j )
. (3)

This equation is known as Bayes’ formula.26 If we think of the events F j
26 After Thomas Bayes.

as possible hypotheses about some subject of study, Bayes’ formula can

be interpreted as showing how opinions held about these hypotheses (i.e.,

P (F j )) should change on basis of the evidence of the experiment.27 27 The former is known as the prior proba-
bility, and the latter is the posterior.

Example 17. Consider a bug in a program, which may be in any of three

different pieces of code with equal probability. For each of the three pieces

i , let 1°Æi be the probability of finding the bug when searching in that

piece given that it is, in fact, there.28 If we search in the first piece, and we 28 Æi is the overlook probability: how likely
it is to oversee the bug when looking in
the right place? Some bugs are difficult to
catch.

do not find any bug, what is the probability that the bug is in each of the

three pieces i 2 {1,2,3}?

Solution. Let Fi ,1 ∑ i ∑ 3 be the event that the bug is in the i -th piece of

code, and E the event that the search in the first piece was unsuccessful.

Then we have:

P (F1 | E ) = P (E |F1)P (F1)
P3

i=1 P (E |Fi )P (Fi )
= Æ1 · (1/3)
Æ1 · (1/3)+1 · (1/3)+1 · (1/3)

= Æ1

Æ1 +2
,

and for j ,2 ∑ i ∑ 3,

P (F j | E ) =
P (E |F j )P (F j )

P3
i=1 P (E |Fi )P (Fi )

= 1 · (1/3)
Æ1 · (1/3)+1 · (1/3)+1 · (1/3)

= 1
Æ1 +2

.

For instance, if Æ1 = 0.4, then the conditional probability that the bug is in

the first piece, given that we did not find it there is 1
6 .± 4 ±What about the other pieces?

Independent Events

A S I T C A N B E seen from the previous examples, in general the conditional

probability of an event E given F is not equal to the (unconditional) prob-

ability P (E ). That is, having evidence about F generally changes the like-

lihood of observing E . In the special case where P (E | F ) = P (E ), we say

that E and F are independent. In other words, E and F are independent

if knowledge about F does not change the probability of E occurring.

Recall that P (EF ) = P (E | F )P (F ). Thus, if E and F are independent

we have P (EF ) = P (E )P (F ). The converse implication holds too.

Definition 18. Two events E , F are independent if P (EF ) = P (E )P (F ). If

E and F are not independent, they are dependent.

Example 19. A card is selected at random from a standard deck of 52

cards.29 Let E be the event of selecting an ace, and F the event of se- 29 French playing cards.

lecting a red card. Then, E and F are independent because P (EF ) = 1
26 ,

P (E ) = 4
52 , and P (F ) = 26

52 . 4

Proposition 20. If E and F are independent, then so are E and F .30 30 That is, if E and F are independent, the
likelihood of E is unchanged by informa-
tion about F , whether it holds or not.



I N T RO D U C T I O N TO P RO B A B I L I T Y T H E O RY 15

Proof. Assume that E and F are independent. Then we have

P (E ) = P (EF )+P (EF ) = P (E )P (F )+P (EF ),

where the last equality follows from the independence of E and F . Then

P (EF ) = P (E )(1°P (F )) = P (E )P (F ).

We know then that independence is symmetric and closed under com-

plementation. However, surprisingly, it is not closed under intersections.

That is, if E is independent of F and of G , it is not necessarily the case that

E and FG are independent.

Example 21. You throw two fair dice. Let E be the event that the sum of

the two dice is 7, F the event that the first die is 1, and G the event that

the second die is 6. It can be shown that E is independent of both F and

G .± But, obviously, E is not independent of FG ; in fact, P (E |FG ) = 1. ±You will show this at the lab.

This example shows that defining independence between more than

two events is more complex than merely checking that all pairs of events

are independent between them. We get the following definition.

Definition 22. Three events E , F , and G are independent if:31 31 Informally, this can be understood as ev-
ery subset of events being mutually inde-
pendent.P (EFG ) = P (E )P (F )P (G ),

P (EF ) = P (E )P (F ),

P (EG ) = P (E )P (G ), and

P (FG ) = P (F )P (G ).

If E , F , and G are independent, then E will necessarily be indepen-

dent of any event formed by combinations of F and G . For example, E is

independent of F [G because

P (E (F [G )) = P (EF [EG ) = P (EF )+P (EG )°P (EFG )

= P (E )P (F )+P (E )P (G )°P (E )P (F )P (G )

= P (E ) (P (F )+P (G )°P (FG )) = P (E )P (F [G ).

Definition 22 is generalized to more than three events in the obvious

way. The events E1, . . . ,En are independent iff for every subset F1, . . . ,Fm ,

m ∑ n of these events, it holds that P (F1 · · ·Fm) = P (F1) · · ·P (Fm).

Considering many different independent events becomes important

when we deal with a sequence of repetitions of an experiment. For ex-

ample, if an experiment consists in rolling a die several times, we may see

each roll of the die as a subexperiment, and it makes sense to assume that

the outcomes of previous (or future) rolls have no effect on the outcome

of the current roll.

1

2

3
...

n

s t

...

...

Figure 4: A parallel system with current
flowing from s to t .

Example 23. Consider the parallel system in Figure 4, which works if at

least one of the n components work. Each each component i , indepen-

dently of all others, works with probability pi ,1 ∑ i ∑ n, what is the proba-

bility that the system functions?
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Solution. Let E be the event that the system functions, and Fi ,1 ∑ i ∑ n

be the event that the component i functions. Then P (E ) is exactly the

probability that all components fail; that is

P (E ) = 1°P (E ) = 1°P (F1 · · ·Fn) = 1°
nY

i=1
P (Fi ),

where the last equality arises from the independence of the events.32 32 The last expression can be rewritten to
use the probabilities of the events, and not
their complements, if needed.



Random Variables

U S UA L LY, W H E N RU N N I N G experiments, we are only interested in some

numerical values determined by the results. For example, after rolling two

dice, we may be interested in their sum, but not on the specific individ-

ual die-values that led to that sum.33 These quantities of interested are 33 If the sum is 7, we do not care which of
the possible 6 ways to get this sum was ac-
tually observed.

known as random variables.34 Since the values of random variables are

34 This is a bad choice of name, as they are
not random, nor variables.

determined by the outcome of an experiment, they are associated with a

probability degree.

Consider for example the random variable X given by the sum of two

fair dice. X can take only values between 2 and 12, and the probability of

each of these values is

P ([X = 2]) = P ({(1,1)}) = 1
36

P ([X = 3]) = P ({(1,2), (2,1)}) = 2
36

P ([X = 4]) = P ({(1,3), (2,2), (3,1)}) = 3
36

P ([X = 5]) = P ({(1,4), (2,3), (3,2), (4,1)}) = 4
36

P ([X = 6]) = P ({(1,5), (2,4), (3,3), (4,2), (5,1)}) = 5
36

P ([X = 7]) = P ({(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}) = 6
36

P ([X = 8]) = P ({(2,6), (3,5), (4,4), (5,3), (6,2)}) = 5
36

P ([X = 9]) = P ({(3,6), (4,5), (5,4), (6,3)}) = 4
36

P ([X = 10]) = P ({(4,6), (5,5), (6,4)}) = 3
36

P ([X = 11]) = P ({(5,6), (6,5)}) = 2
36

P ([X = 12]) = P ({(6,6)}) = 1
36

.

Since X must take some value, the sum of all these probabilities must be

1. This fact can be easily verified from this distribution.

Another random variable Y of interest can be the value of the first die.

In this case, Y is equally likely to take any of the values from 1 to 6.

These examples presented random variables taking finitely many dif-

ferent values. Random variables whose values can be described as a (finite

or infinite) sequence x1, x2, . . . are called discrete. There are also random

variables that can take a continuum of possible values; these are called

continuous. For example, the weight of a person can take any value in
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some interval (a,b).35 35 There are also mixed random variables,
but we will not consider them much dur-
ing this lecture.Definition 24. The cumulative distribution function (often called simply

distribution function) of a random variable X is the function F defined for

every real number x by:36 36 For this course, we consider only ran-
dom variables taking real numbers as val-
ues.F (x) := P [X ∑ x].

The notation X ª F expresses that F is the distribution function of X .

All probability questions about X can be answered in terms of its distri-

bution function F . For example, to compute P [a <X ∑ b], we use the fact

that [X ∑ b] can be decomposed into the two mutually exclusive events

[X ∑ a] and [a < X ∑ b]. Hence, P [X ∑ b] = P [X ∑ a]+ [a < X ∑ b].

From this, we can deduce

P [a <X ∑ b] = F (b)°F (a).

Example 25. Consider the continuous random variable X with the distri-

bution function

F (x) =

8
<

:
0 x ∑ 0

1°exp(°x2) x > 0

The probability that X is greater than 1 is

P [X > 1] = 1°P [X ∑ 1] = 1°F (1) = e°1 = 0.368. 4

Types of Random Variables

I F A R A N D O M VA R I A B L E (RV) X is discrete,± then we can define its proba- ±That is, if it can only take values from a
sequence x1, x2, . . ..bility mass function as p(x) := P [X = x]. Since the variable is discrete, and

X must take one value, we know that p(x) is positive for at most countably

many elements,37 and that
P1

i=1 p(xi ) = 1.
37 At most those that can be taken by X .

Example 26. Consider a RV X that can take values from {1,2,3}. If we

know that p(2) = 1
3 and p(3) = 1

6 , then we can deduce that

p(1) = 1°p(2)°p(3) = 1° 1
3
° 1

6
= 1

2
.

This function is shown in Figure 5. 4

1 2 3

1
6

1
3

1
2

x

p(x)

Figure 5: Probability mass function from
Example 26.

The cumulative distribution function F can be computed in these cases

from p by adding all the relevant values: F (x) =P
y∑x p(y). Whenever X is

a discrete RV whose possible values are x1 < x2 < . . ., the distribution func-

tion F is a step function: it remains constant for the interval [xi°1, xi ), and

then makes a jump of size p(xi ) at xi . For instance, if X has the probabil-

ity mass function given in Example 26, then the cumulative distribution

function of X is

F (x) =

8
>>>>>><

>>>>>>:

0 x < 1
1
2 1 ∑ x < 2
5
6 2 ∑ x < 3

1 3 ∑ x,

as depicted in Figure 6.
1 2 3 4

1
2

5
6

1

x

F (x)

Figure 6: Cumulative distribution function
from the RV of Example 26.
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W E O F T E N N E E D TO consider random variables that can take all the pos-

sible values from a (real) interval.

Definition 27. The RV X is continuous if there exists a non-negative func-

tion f defined over all real numbers x 2R such that for any set B µR

P [X 2 B ] =
Z

B
f (x)d x.

This function f is called the probability density function of X .

Essentially, to compute the probability of an event defined by a set of

values B , we find the integral of the probability density function, which is

the intuitive generalization of the mass function for continuous variables.

Since X must take some value in (°1,1), f (x) must satisfy

1 = P [X 2 (°1,1)] =
Z1

°1
f (x)d x.

All probability statements can be answered integrating over f (x); for in-

stance, if B = [a,b], then P [a ∑ X ∑ b] =
Rb

a f (x)d x. In particular, if a = b

then we have P [X = a] =
Ra

a f (x)d x = 0.38 As an example, Figure 7 shows 38 If X is continuous, then the probability
of observing any specific value is always 0.the probability density function

f (x) =

8
<

:
e°x x ∏ 0

0 x < 0,

and the area that represents P [a <X < b].

a b

1

x

f (x)

P [a <X < b]

Figure 7: A probability density function,
and the area representing P [a <X < b].

The probability density function f and the cumulative distribution F

are related by the expression

F (a) = P [X ∑ a] =
Za

°1
f (x)d x,

or equivalently, d
d x F (x) = f (x). In other words, the density is the derivate

of the cumulative distribution.

If the probability density function is continuous, then taking a small "

yields, from Definition 27,

P [a ° "

2
∑X ∑ a + "

2
] =

Za+ "
2

a° "
2

f (x)d x º " f (a).
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In other words, f tells us how likely it is to see a value that is close enough

to a.

Example 28. Consider the continuous random variable X with the prob-

ability density function

f (x) =

8
<

:
c(4x °2x2) 0 < x < 2

0 otherwise,

for some constant c.

1. What is the value of c?

2. Compute P [X > 1].

Solution. Since f is a density function, it must hold that

1 =
Z1

°1
f (x)d x =

Z2

0
c(4x °2x2)d x = c

µ
2x2 ° 2x3

3

∂ØØØØ
2

0
,

and hence c = 3
8 .

From this, we can conclude that

P [X > 1] =
Z1

1
f (x)d x = 3

8

Z2

1
(4x °2x2)d x = 1

2
. 4

Joint Distributions

W H E N D E A L I N G W I T H E X P E R I M E N T S, we are often interested in the re-

lationship between two or more random variables, rather than merely ob-

serving one. For example, for health policies, we may be interested in the

relationship between hours spent sitting down and the incidence of back

pain, or want to understand the relationship between working hours and

productivity of employees.

To consider two random variables X and Y simultaneously, we need

a joint cumulative probability distribution function F that specifies the

probability of X and Y to be below a given value; that is,

F (x, y) = P [X ∑ x,Y ∑ y].

Knowing the joint probability distribution allows us to find the probabil-

ities of different statements concerning with the variables X and Y . For

example, the distribution function FX of X is obtained by not imposing

any limit on the values of Y ; that is,

FX (x) = P [X ∑ x] = P [X ∑ x,Y <1] = F (x,1).

Similarly, the cumulative distribution function of Y is FY (y) = F (1, y).39 39 Formally, these would in fact be limits
(i.e., FX (x) = limy!1 F (x, y), but this in-
tuition serves to our purposes.

For discrete random variables X and Y taking values x1, x2, . . ., and

y1, y2, . . ., respectively, the joint probability mass function p of X and Y

is defined in the obvious way: p(x, y) = P [X = x,Y = y].

The individual probability mass functions of each of the variables can

be easily obtained by eliminating the variable that is not of interest. E.g.,
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since Y must take some value y j , the event [X = x] is equivalent to the

union of the mutually exclusive events [X = x,Y = y j ]. Using Axiom 3 of

probabilities, we have Axioms of probability:

1. 0 ∑ P (E ) ∑ 1

2. P (S ) = 1

3. P (
Sn

i=1 Ei ) = Pn
i=1 P (Ei ) if Ei s are mu-

tually exclusive.

P [X = x] = P

√
[

j
[X = x,Y = y j ]

!

=
X

j
P [X = x,Y = y j ] =

X

j
p(x, y j ).

Analogously, P [Y = y] =P
i p(xi , y).

This says that the joint probability mass function fully determines the

individual probability mass functions for each of the random variables

involved. However, the converse does not hold: knowing P [X = x] and

P [Y = y] is not sufficient for deriving P [X = x,Y = y].

Example 29. Consider a box of batteries, where 2 are new, 3 are partially

charged, and 4 are completely empty. We randomly select 3 batteries from

this box. Let X and Y denote the number of new, and the number of par-

tially charged batteries selected, respectively. The joint probability mass

function p(x, y) = P [X = x,Y = y] of X and Y is:± ±Do you understand why?

p(0,0) =
°4

3

¢

°9
3

¢ =
4

84
p(0,1) =

°3
1

¢°4
2

¢

°9
3

¢ = 18
84

p(0,2) =
°3

2

¢°4
1

¢

°9
3

¢ = 12
84

p(0,3) =
°3

3

¢

°9
3

¢ =
1

84

p(1,0) =
°2

1

¢°4
2

¢

°9
3

¢ = 12
84

p(1,1) =
°2

1

¢°3
1

¢°4
1

¢

°9
3

¢ = 24
84

p(1,2) =
°2

1

¢°3
2

¢

°9
3

¢ = 6
84

p(2,0) =
°2

2

¢°4
1

¢

°9
3

¢ = 4
84

p(2,1) =
°2

2

¢°3
1

¢

°9
3

¢ = 3
84

A simpler way to express all these probabilities is shown in Table 1. 4

Table 1: The joint mass function p(x, y)
from Example 29. The denominator 84 in
the values is not included.

i
j

0 1 2 3 Sum

0 4 18 12 1 35
1 12 24 6 0 42
2 4 3 0 0 7

Sum 20 45 18 1

Notice that the probability mass function of X is obtained by summing

the elements in a row, while the mass function of Y appears from sum-

ming through the columns. These probabilities are often known as the

marginal probability mass functions of X and Y , respectively.40 To check 40 To remember this name, think that they
appear in the margin of the joint probabil-
ity table.

the correctness of such a probability table, one should check that the sum

of the marginal row and of the marginal column is 1.± ±Do you understand why? In the case of
Table 1, the sum should be 84, because the
denominator 84 is not written.Example 30. Consider a community where 15 percent of the families have

no children, 20 percent have 1, 35 percent have 2, and 30 percent have

3. Suppose that each child is equally likely to be a boy or a girl. From

a randomly chosen family, let X be the random variable measuring the

number of boys, and Y the number of girls. The joint probability mass

function is shown in Table 2. The cells in the first row are computed next.± ±Verify the others!

P [X = 0,Y = 0] = P [no children] = 0.15

P [X = 0,Y = 1] = P [1 child that is girl]

= P [1 child]P [1 girl | 1 child] = 0.2 ·0.5 = 0.1

P [X = 0,Y = 2] = P [2 children that are girls]
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i

j
0 1 2 3 Sum

0 0.1500 0.1000 0.0875 0.0375 0.3750

1 0.1000 0.1750 0.1125 0 0.3875

2 0.0875 0.1125 0 0 0.2000

3 0.0375 0 0 0 0.0375

Sum 0.3750 0.3875 0.2000 0.0375

Table 2: The joint mass p(x, y) from Exam-
ple 30.

= P [2 children]P [2 girls | 2 children] = 0.35 · (0.5)2=0.0875

P [X = 0,Y = 3] = P [3 children]P [3 girls | 3 children] = 0.3 · (0.5)3 = 0.0375.

From Table 2 it can be seen that, for example, the probability of having at

least one girl is 0.625.41 4 41 Notice that the table is symmetric, and
so the probability of having at least one
boy is exactly the same in this case.

Definition 31. The RVs X and Y are jointly continuous if there exists a

function f (x, y) defined for all x, y 2R such that for every set C µR£R42 42 That is, for every set in the two-
dimensional plane.

P [(X ,Y ) 2C ] =
œ

(x,y)2C
f (x, y)d xd y .

The function f (x, y) is called the joint probability density function of X

and Y .

If A,B µR are two sets of real numbers, then it follows from this defini-

tion that

P [X 2 A,Y 2 B ] =
Z

B

Z

A
f (x, y)d xd y .

From F (a,b) = P [X ∑ a,Y ∑ b] =
Rb
°1

Ra
°1 f (x, y)d xd y , it follows (via dif-

ferentiation) that whenever the partial derivatives are defined,

f (a,b) = @2

@a@b
F (a,b).

As in the case of single random variables, f (a,b) is a measure of how likely

it is for the random vector (X ,Y ) be appear near (a,b); but the probability

of being exactly (a,b) remains 0.

Notice that if X and Y are jointly continuous, then each of them is

continuous individually. Moreover, the probability density function of X

is fX (x) :=
R1
°1 f (x, y)d y . Hence,

P [X 2 A] = P [X 2 A,Y 2R] =
Z

A

Z1

°1
f (x, y)d yd x =

Z

A
fX (x)d x.

Example 32. Consider the joint density function for X and Y

f (x, y) =

8
<

:
2e°x e°2y x, y > 0

0 otherwise.

Compute P [X > 1,Y < 1], P [X <Y ], and P [X < a].43 43 Recall that
R

ekx d x = (1/k)ekx + c.

Solution.

P [X > 1,Y < 1] =
Z1

0

Z1

1
2e°x e°2y d xd y

=
Z1

0
2e°2y (°e°x ØØ1

1 )d y = e°1
Z1

0
2e°2y d y
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= e°1(°e°2y ØØ1
0) = e°1(1°e°2)

P [X <Y ] =
œ

(x,y)|x<y
2e°x e°2y d xd y =

Z1

0

Zy

0
2e°x e°2y d xd y

=
Z1

0
2e°2y (1°e°y )d y =

Z1

0
2e°2y d y °

Z1

0
2e°3y d y

= 1° 2
3
= 1

3

P [X < a] =
Za

0

Z1

0
2e°x e°2y d yd x =

Za

0
e°x d x = 1°e°a 4

Independent Random Variables

T H E R A N D O M VA R I A B L E S X and Y are independent if for any two sets

A,B µ R it holds that P [X 2 A,Y 2 B ] = P [X 2 A]P [Y 2 B ].± That is, they ±Recall Definition 18.

are independent if for all possible sets A,B , the events EA = [X 2 A] and

FB = [Y 2 B ] are independent. This definition of independence is equiv-

alent to requiring that for all a,b 2R

P [X ∑ a,Y ∑ b] = P [X ∑ a]P [Y ∑ b],

or, alternatively, that F (a,b) = FX (a)FY (b).44± 44 To prove this, notice that one direction
corresponds directly to the definition. The
other direction follows from the axioms of
probability, with caveats of which sets are
allowed.
±F is the joint distribution function.

If X and Y are discrete, independence is equivalent to requiring, for all

x, y 2 R that p(x, y) = pX (x)pY (y), where pX and pY are the probability

mass functions. In the continuous case, it refers to f (x, y) = fX (x) fY (y).45

45 As for events, random variables that are
not independent are called dependent.

Example 33. Let X and Y be two independent random variables, each

having the density function

f (x) =

8
<

:
e°x x > 0

0 otherwise.

Find the density function of X /Y .

Solution. We first compute the distribution function FX /Y of X /Y . Given

a > 0,

FX /Y (a) = P [X /Y ∑ a] =
œ

x/y∑a
f (x, y)d xd y

=
œ

x/y∑a
e°x e°y d xd y =

Z1

0

Zay

0
e°x e°y d xd y

=
Z1

0
(1°e°ay )e°y d y =

µ
°e°y + e°(a+1)y

a +1

∂ØØØØ
1

0
= 1° 1

a +1
.

Differentiating this function over the variable a, we obtain the density

function fX /Y (a) = 1/(a +1)2, for 0 < a <1. 4

W E C A N G E N E R A L I Z E the notion of joint probability distributions from 2

to n random variables, defining the analogous notion of the joint cumula-

tive probability distribution F , the joint probability mass function p if they

are discrete, the joint probability density function f if they are continuous,

and independence if every finite subcollection of random variables is in-

dependent.
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Example 34. Consider a stock, whose price changes every day indepen-

dently with the probability mass function p(x) of the stock changing by x

defined as

p(x) =

8
>>>>>><

>>>>>>:

0.05 x 2 {°3,3}

0.10 x 2 {°2,2}

0.15 x 2 {°1,1}

0.40 x = 0.

If Xi denotes the change in day i , then the probability that it increases in

the next days by 1, 2, and 0 is

P [X1 = 1,X2 = 2,X3 = 0] = p(1)p(2)p(0) = 0.15 ·0.1 ·0.4 = 0.006. 4

Expectation

A F U N D A M E N TA L N OT I O N I N probability theory is the expectation of a

random variable. If the random variable X is discrete and takes values

x1, x2, . . ., then the expectation or expected value of X is

E [X ] :=
X

i
xi P [X = xi ] =

X

i
xi p(xi ).

That is, E [X ] is the weighted average of the values of X , where the weights

are given by their probability of occurrence. For example, if the probability

mass function of X is such that p(0) = 1
2 = p(1), then E [X ] = 0 1

2+1 1
2 = 1

2 ,46 46 The usual average of the values of X .

but if p(0) = 1
3 and p(1) = 2

3 , then E [X ] = 0 1
3 +1 2

3 = 2
3 . This follows from

the fact that the value 1 is twice as likely to appear as the value 0.

An intuitive motivation for the notion of expectation arises from the fre-

quentist view. If an experiment is repeated independently, then the pro-

portion of times we observe a given event E is P (E ). Consider a random

variable X taking values x1, x2, . . ., which represents the winnings of one

execution of a bet, and let p be its mass function.47 Suppose that we re- 47 That is, with probability p(xi ), we win xi
units.peat the bet n times, for n sufficiently large. Then, in approximately np(xi )

of those times, we win xi units. Since this is true for all i , overall we win
P

i xi ·np(xi ). Thus, in average, on each bet, we will win

X

i

xi ·np(xi )
n

=
X

i
xi p(xi ) = E [X ].

Example 35. If X is the outcome of rolling a fair die, then p(i ) = 1/6 for

all i ,1 ∑ i ∑ 6. Hence, we get

E [X ] = 1
µ

1
6

∂
+2

µ
1
6

∂
+3

µ
1
6

∂
+4

µ
1
6

∂
+5

µ
1
6

∂
+6

µ
1
6

∂
= 21

6
= 7

2
. 4

Notice from this example that the expectation of X might be a value

that can never occur in X . The expected value is thus not what we will

likely observe, but rather the average of the results over a long run of rep-

etitions of the experiment.48 48 If we roll a die many times, the average
of the results will converge to 3.5.The indicator variable for an event E is a random variable that takes

value 1 if E occurs, and 0 otherwise. If X is the indicator variable of E , then

E [X ] = 1P (E )+0P (E ) = P (E ). That is, the expected value of an indicator

variable is exactly the probability of the event it indicates.
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O N E C A N A L S O D E F I N E the expectation for continuous random variables.

Similarly to the discrete case, for a continuous random varable X with

probability density function f , we have

E [X ] :=
Z1

°1
x f (x)d x.

Example 36. Your IKEA order will arrive at some point after 17:00. You

know by experience that the number of hours X that you have to wait for

the arrival is a random variable with the probability density function

f (x) =

8
<

:

1
2 0 < x < 2

0 otherwise.

The expected amount of time that you will wait is then

E [X ] =
Z2

0

x
2

d x = 1.

That is, on average, you have to wait one hour. 4

The notion of expectation can be intuitively understood as that of the

center of gravity. Suppose, for a discrete random variable X , that the

probability mass distribution is interpreted literally, with a physical ob-

ject with mass proportional to p(xi ) located at each point xi . Then, E [X ]

is the point where such a structure would balance. See Figure 8. It is also

important to notice that for every random variable X , E [X ] has the same

units of measurement as X .
|

-1
|
0

|
1

|
2

Figure 8: Expected value as the center of
gravity.

Properties of Expectation

CO N S I D E R A G I V E N R A N D O M variable X with its probability distribution.

Often, we are not interested in E [X ], but rather on a function of X ; say

g (X ). Notice that g (X ) is itself a random variable, and hence has a prob-

ability distribution that must depend on the distribution of X . If we can

compute this distribution, then E [g (X )] can be readily obtained from it.

Example 37. Let X be the random variable with probability mass func-

tion p(0) = 0.3, p(1) = 0.5, and p(2) = 0.2. Compute E [X 2].

Solution. If Y = X 2, then Y can take the values 0 = 02,1 = 12 and 4 = 22

with probabilities 0.3,0.5, and 0.2, respectively. Then

E [X 2] = E [Y ] = 0 ·0.3+1 ·0.5+4 ·0.2 = 1.3. 4

Example 38. The time that it takes to correct a bug in a piece of software

is a random variable X with density function

f (x) =

8
<

:
1 0 < x < 1

0 otherwise.

If the cost of keeping a bug for time x is x3, what is the expected cost of

such a bug?
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Solution. Let Y =X 3 be the random variable for the cost. The distribution

FY of Y is given, for every 0 ∑ a ∑ 1 by

FY (a) = P [Y ∑ a] = P [X 3 ∑ a] = P [X ∑ a1/3] =
Za1/3

0
1d x = a1/3.

Through differentiation, we get the density fY (a) = 1
3 a°2/3 for 0 ∑ a < 1.

Hence,

E [X 3] = E [Y ] =
Z1

°1
a fY (a)d a

=
Z1

0
a

1
3

a°2/3d a = 1
3

Z1

0
a1/3d a

= 1
3

3
4

a4/3ØØ1
0 = 1/4 4

As we can see, this approach always allows us to compute the expected

value of any function of X , if we know the distribution of X . However, the

process is far from obvious. An easy way to do compute this expectation

is based on the following intuition: since g (X ) takes the value g (x) when-

ever X = x, E [g (X )] should be the weighted average of the values of g (x)

with the weights given by p(x) for each possible value x.49 49 This intuition holds in general. We can
verify that the following proposition holds
for the previous two examples.Proposition 39 (Expectation of Functions). Let X be a random variable,

and g any real-valued function. Then:

1. if X is discrete with probability mass function p(x), then

E [g (X )] =
X

x
g (x)p(x);

2. if X is continuous with probability density function f (x), then

E [g (X )] =
Z1

°1
g (x)p(x)d x.

Corollary 40. For any two constants a,b 2R, E [aX +b] = aE [X ]+b.

Proof. We show here the discrete case.50 50 The continuous case is left as an exercise
to the interested student.

E [aX +b] =
X

x
(ax +b)p(x) = a

X

x
xp(x)+b

X

x
p(x) = aE [X ]+b

Notice in particular that E [b] = b and E [aX ] = aE [X ].

The expected value of X is also known as the mean or the first mo-

ment of X . In general, the n-th moment of X , for any n 2N, is defined as

E [X n], which we know how to compute by Proposition 39.

P RO P O S I T I O N 39 C A N B E E X T E N D E D to deal with several random vari-

ables. In the case of two random variables X and Y , if g is a function over

pairs of real numbers, then

E [g (X ,Y )] =

8
<

:

P
y
P

x g (x, y)p(x, y) X ,Y discrete
R1
°1

R1
°1 g (x, y) f (x, y)d xd y X ,Y jointly continuous.

In particular, if g (X ,Y ) = X +Y , where X ,Y are jointly continuous, we

get

E [X +Y ] =
Z1

°1

Z1

°1
(x + y) f (x, y)d xd y
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=
Z1

°1

Z1

°1
x f (x, y)d xd y +

Z1

°1

Z1

°1
y f (x, y)d xd y

= E [X ]+E [Y ], (†)

where (†) is a consequence of using gX (X ,Y ) =X ; that is

E [X ] = E [gX (X ,Y )] =
Z1

°1

Z1

°1
x f (x, y)d xd y ,

and similarly for gY (X ,Y ) =Y .± ±Try to prove that the same holds for dis-
crete variables.Since sums are associative, we can simply repeat this argument to ob-

tain the general form for sums of random variables: for any n 2N,

E

"
nX

i=1
Xi

#

=
nX

i=1
E [Xi ].

Example 41. Two fair dice are rolled. Find the expected value of their sum.

Solution. If X is the random variable representing the sum, we know that

we can compute E [X ] = P12
i=1 i P [X = i ]. But a simpler approach is to

consider two variables Y1 and Y2, which represent the result of each indi-

vidual die. Then X =Y1 +Y2, and E [X ] = E [Y1]+E [Y2] = 7.51 51 See Example 35.

Example 42. You have n different pairs of shoes, which are all mixed up in

your closet. If you pair them completely at random (selecting one left and

one right shoe), what is the expected number of correct pairs you get?

Solution. If X is the number of correct pairs, we can compute E [X ] via

the random variables X1, . . . ,Xn , where for each i ,1 ∑ i ∑ n, Indicator variables.

Xi =

8
<

:
1 i -th pair is correct

0 otherwise.

Then, X =Pn
i=1 Xi . Since the i -th left shoe is equally likely to be matched

with any of the n right shoes, it follows that P [Xi = 1] = 1/n,52 and hence 52 Probability of the i -th left shoe matching
its right one.E [Xi ] = 1/n. From this, we obtain E [X ] =Pn

i=1 E [Xi ] = n(1/n) = 1.53 4
53 This means that regardless of how many
pairs we start with, in average only one
pair will be correct.A N I M P O RTA N T P RO P E RT Y of the mean arises when trying to predict the

value of a random variable X . If we predict that X will take the value c

(for example, when placing a bet), then the square of the prediction error

is (X ° c)2. Let µ= E [X ]; then,

E [(X ° c)2] = E [(X °µ+µ° c)2] = E [(X °µ)2 +2(X °µ)(µ° c)+ (µ° c)2]

= E [(X °µ)2]+2(µ°2)E [X °µ]+ (µ° c)2

= E [(X °µ)2]+ (µ° c)2 (†)

∏ E [(X °µ)2],

where (†) follows from E [X °µ] = E [X ]°µ= 0. Thus, the average squared

error is minimised when we predict that X is equal to its mean µ.54 54 The best predictor of a random vari-
able, in terms of minimizing the expected
square of its error, is just the mean.

Variance
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T H E E X P E C T E D VA LU E O F a random variable X provides the weighted av-

erage of the values it may take, but this information does not tell us much

about the distribution of the values; e.g., how far apart are the values from

each other.55 For example, the random variables X and Y with pX (0) = 1 55 The spread or variation of the values.

and pY (°100) = pY (100) = 0.5, respectively, have both the same expecta-

tion; namely 0. However, the values of Y are much more separated be-

tween themselves than those of X , which is a constant.

In order to measure the variation of the values of X , we can try to see

how far is X from its mean µ in average; that is, E [|X °µ|]. However,

dealing with absolute values is often problematic mathematically.56 For 56 It requires a case analysis for when X is
larger or smaller than µ.that reason we consider the expected squared difference between them.

Definition 43. If X is a random variable with E [X ] =µ, then the variance

of X is V ar (X ) := E [(X °µ)2].

Notice that

V ar (X ) = E [(X °µ)2] = E [X 2 °2µX +µ2] = E [X 2]°2µE [X ]+µ2

= E [X 2]°µ2 = E [X 2]° (E [X ])2.

This is often a simpler way to compute the variance.

Example 44. Let X represent the outcome of rolling a fair die. We know

that P [X = i ] = 1/6 for 1 ∑ i ∑ 6. Then,

E [X 2] = 1
6

6X

i=1
i 2 = 1

6
(12 +22 +32 +42 +52 +62) = 91

6
.

We have also seen that E [X ] = 7/2. Thus,

V ar (X ) = E [X 2]° (E [X ])2 = 91
6

° 49
4

= 35
12

. 4

The variance of a linear transformation of X is also easy to compute.

Let µ= E [X ].57 Then, 57 Recall that E [aX +b] = aE [X ]+b.

V ar (aX +b) = E [(aX +b °E [aX +b])2] = E [(aX +b °aµ°b)2]

= E [(aX °aµ)2] = E [a2(X °µ)2] = a2E [(X °µ)2]

= a2V ar (X ).

In particular, this means that V ar (b) = 0 and V ar (X +b) = V ar (X ) for

any constant b.58 That is, constants have variance 0, and shifting the val- 58 By setting a = 0 and a = 1, respectively.

ues of X by a constant does not affect its variance.± However, scaling X by ±Think why this must be the case.

a constant scales quadratically the variance; i.e. V ar (aX ) = a2V ar (X ).

The value
p

V ar (X ), called the standard deviation of X , has the same

units as the mean.

Covariance

W E H AV E S E E N T H AT the mean of a sum of random variables is equal to

the sum of their means. This result does not carry out to variances in gen-

eral. In fact, we know already that

V ar (X +X ) =V ar (2X ) = 4V ar (X ) 6=V ar (X )+V ar (X ).
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However, if two random variables are independent, then the variance of

their sum corresponds to the sum of their variances. We will show this

using the covariance.

Definition 45. Let X and Y be two random variables, and µX = E [X ],

µY = E [Y ]. The covariance of X and Y is

Cov(X ,Y ) = E [(X °µX )(Y °µY )]

Expanding this definition, we obtain

Cov(X ,Y ) = E [X Y °µX Y °µY X +µXµY ]

= E [X Y ]°µX E [Y ]°µY E [X ]+µXµY

= E [X Y ]°µXµY °µY µX +µXµY = E [X Y ]°E [X ]E [Y ].

Notice that the covariance is symmetric, and Cov(X ,X ) = V ar (X ). In

addition, for any constant a, Cov(aX ,Y ) = aCov(X ,Y ). The covariance

is also additive.

Proposition 46. Cov(X1 +X2,Y ) =Cov(X1,Y )+Cov(X2,Y ).

Proof.

Cov(X1 +X2,Y ) = E [(X1 +X2)Y ]°E [X1 +X2]E [Y ]

= E [X1Y ]+E [X2Y ]° (E [X1]+E [X2])E [Y ]

= E [X1Y ]°E [X1]E [Y ]+E [X2Y ]°E [X2]E [Y ]

=Cov(X1,Y )+Cov(X2,Y ).

This can be easily generalized to arbitrary sums and, using the symme-

try of the covariance, we obtain the following theorem.

Theorem 47. Cov(
Pn

i=1 Xi ,
Pm

j=1 Y j ) =Pn
i=1

Pm
j=1 Cov(Xi ,Y j ).

We can now compute the variance of the sum of random variables as:59 59 Recall that Cov(X ,X ) =V ar (X ).

V ar

√
nX

i=1
Xi

!

=Cov

√
nX

i=1
Xi ,

nX

i=1
Xi

!

=
nX

i=1

nX

j=1
Cov(Xi ,X j )

=
nX

i=1

"
X

j 6=i
Cov(Xi ,X j )+Cov(Xi ,Xi )

#

=
nX

i=1

X

j 6=i
Cov(Xi ,X j )+

nX

i=1
Cov(Xi ,Xi )

=
nX

i=1

X

j 6=i
Cov(Xi ,X j )+

nX

i=1
V ar (Xi ).

If n = 2, then this means that

V ar (X +Y ) =V ar (X )+V ar (Y )+Cov(X ,Y )+Cov(Y ,X )

=V ar (X )+V ar (Y )+2Cov(X ,Y ).

Then we get to the result that we have hinted before.
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Theorem 48. If X and Y are independent, then Cov(X ,Y ) = 0.60 60 Notice that this is not an equivalence:
two variables may have covariance 0, and
still not be independent.Proof. It suffices to show that E [X Y ] = E [X ]E [Y ]. We show it for the

discrete case only.61 61 All other cases are analogous.

E [X Y ] =
X

j

X

i
xi y j P [X = xi ,Y = y j ]

=
X

j

X

i
xi y j P [X = xi ]P [Y = y j ] (†)

=
X

j
y j P [Y = y j ]

X

i
xi P [X = xi ] = E [X ]E [Y ],

where (†) follows by independence.

In particular, if X1, . . . ,Xn are independent, then

V ar (
nX

i=1
Xi ) =

nX

i=1
V ar (Xi ).

Example 49. Compute the variance of the sum of 10 independent rolls of

a fair die.

Solution. If Xi denotes the i -th roll, we get± ±Recall Example 44.

V ar (
10X

i=1
Xi ) =

10X

i=1
V ar (Xi ) = 10(

35
12

) = 175
6

. 4

Intuitively, the covariance describes the relationship between two vari-

ables. Consider for example the indicator variables X , Y for the events E

and F , respectively. It follows that

Cov(X ,Y ) = E [X Y ]°E [X ]E [Y ] = P [X = 1,Y = 1]°P [X = 1]P [Y = 1].

Then, Cov(X ,Y ) > 0 if and only if P [X = 1,Y = 1] > P [X = 1]P [Y = 1]

or, equivalently, P (Y = 1 | X = 1) > P [Y = 1]. In words, the covariance

tells us whether it is more or less likely to observe [Y = 1] when we know

that X = 1.62 62 And by symmetry, also the dual.

In general, a positive covariance between two RVs expresses that both

variables grow together,63 while a negative covariance says that one de- 63 That is, Y grows as X grows.

creases while the other increases. The strength of the relationship between

the two variables is indicated by their correlation, defined as

Cor r (X ,Y ) = Cov(X ,Y )
p

V ar (X )V ar (Y )
.

This dimensionless value is always between -1 and 1.
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Figure 9: Random variables X and Y with
correlations (a) 0.75; (b) 0.2; (c) 0; and
(d) °0.75.
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Moment Generating Functions

EV E RY R A N D O M VA R I A B L E X has a moment generating function (mgf)

defined for every t 2N as

¡(t ) := E [etX ] =

8
<

:

P
x et x p(x) if X is discrete

R
x et x f (x)d x if X is continuous

This function is called moment generating because all the moments of X

can be obtained by differentiating it and evaluating at zero.64 For example, 64 The n-th moment of X is E [X n ].

¡0(t ) = d
d t

E
h

etX
i
= E

∑
d

d t
etX

∏
= E

h
X etX

i
.

Hence, ¡0(0) = E [X ]. Similarly, ¡00(t ) = E
£
X 2etX §

and so ¡00(0) = E [X 2].

In general, the n-th moment of X is the n-th derivative of ¡ evaluated at

t = 0.

An important property is that the mgf of the sum of independent ran-

dom variables is the product of their individual moment generating func-

tions. For two random variables, the mgf of X +Y is

¡X+Y (t ) = E
h

et (X+Y )
i
= E

h
etX etY

i

= E
h

etX
i

E
h

etY
i
=¡X (t )¡Y (t ), (†)

where (†) follows because X and Y , and hence also etX and etY are in-

dependent.65 65 In the proof of Theorem 48, we have
shown that if two random variables are in-
dependent, then E [X Y ] = E [X ]E [Y ].

Interestingly, mgfs uniquely determine the distribution of random vari-

ables; that is, there is a one-to-one correspondence between distributions

and their moment generating function.

The Weak Law of Large Numbers

W E N OW P ROV E two important results.

Theorem 50 (Markov’s Inequality). Let X be a random variable that takes

only non-negative values. Then, for every a > 0

P [X ∏ a] ∑ E [X ]
a

.

Proof. We prove it for a continuous variable with density f .

E [X ] =
Z1

0
x f (x)d x =

Za

0
x f (x)d x +

Z1

a
x f (x)d x

∏
Z1

a
x f (x)d x ∏

Z1

a
a f (x)d x = a

Z1

a
f (x)d x = aP [X ∏ a].

Corollary 51 (Chebyshev’s Inequality). If X is a random variable with

mean µ and variance æ2, then for every k > 0 we have

P [|X °µ|∏ k] ∑ æ2

k2 .
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Proof. Notice that (X °µ)2 is a non-negative random variable. So we can

apply Markov’s inequality, with a = k2 to get

P [(X °µ)2 ∏ k2] ∑ E [(X °µ)2]
k2 .

Since (X °mu)2 ∏ k2 holds if and only if |X °µ|∏ k, this implies

P [|X °µ|∏ k] ∑ E [(X °µ)2]
k2 ∑ æ2

k2 .

The Markov and Chevishev inequalities allow bounding probabilities

even if the general distribution of X is unknown, as long as the mean, and

potentially the variance, is known.66 66 If the distribution is known, the proba-
bilities can usually be computed precisely,
without the need to approximate.

Example 52. Suppose that the number of hours that a person works per

week is a random variable with mean 40.

1. What can be said about the probability that this week they will work

more than 60 hours?

2. If the variance of the working hours per week is 16, what is the proba-

bility that this week’s work will be between 32 and 48 hours?

Solution. Let X be the number of working hours in a week.

1. Using Markov’s inequality, P [X ∏ 60] ∑ E [X ]
60 = 40

60 = 2/3.

2. Using Chebyshev’s inequality, P [|X °40| ∏ 8] ∑ 16
64 = 1/4. So, we know

that P [|X °40|∑ 8] = 1°P [|X °40|∏ 8] ∏ 0.75. 4

If we use Chebyshev’s inequality with distance kæ, we get that

P [|X °µ|∏ kæ] ∑ æ2

k2æ2 = 1
k2 .

That is, the probability that X differs from its mean by at least k standard

deviations is bounded by 1
k2 .67 67 Decreases quadratically.

A consequence of this inequality is that if one takes several indepen-

dent and identically distributed random variables, then their average will

tend to their mean (with probability 1).68 68 This is the basis of many statistical anal-
yses, for repeated experiments

Theorem 53 (Weak Law of Large Numbers). Let X1,X2, . . . be a sequence

of independent, identically distributed RVs with mean E [Xi ] =µ. Then, for

any "> 0

lim
n!1

P
∑ØØØØ

Pn
i=1 Xi

n
°µ

ØØØØ> "
∏
= 0.

Proof. Suppose for simplicity that the random variables have a finite vari-

ance æ2. Since all the variables are independent, if Y =
Pn

i=1 Xi

n , then

E [Y ] =µ V ar (Y ) = æ2

n
.

Applying Chebyshev’s inequality results in

P
∑ØØØØ

Pn
i=1 Xi

n
°µ

ØØØØ> "
∏
∑ æ2

n"2 .
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Suppose for example that we independently repeat a clinical trial. Let

E be a fixed event that has probability P (E ) of occurring at each trial. If

Xi is the indicator variable for E occurring at trial i , then
Pn

i=1 is the num-

ber of times that E is observed in the first n trials. Since E [Xi ] = P (E ), it

follows from the weak law of large numbers that the probability that the

proportion of trials in which we observe E differs from P (E ) by more than

" tends to 0 as n grows.± ±Think of the name “large numbers.”



Special Random Variables

W E I N T RO D U C E S O M E O F the most commonly observed and used RVs.

Bernoulli and Binomial

CO N S I D E R A N E X P E R I M E N T W H O S E outcome may be a success or a fail-

ure, and X its indicator variable.69 The probability mass function of X is 69 That is, X = 1 if the experiment suc-
ceeds, and X = 0 otherwise.defined by P [X = 1] = p; its probability of success. Such a random variable

is called Bernoulli70 and, as we know already, its expected value is equal to 70 After James Bernoulli.

its probability of success p.

If we independently repeat the experiment n times, and X represents

the number of successes observed, then X is a binomial random variable

with parameters (n, p). The probability mass function of this random vari-

able is defined for all i ,0 ∑ i ∑ n as71

71 Recall that
°n

r
¢
= n!

r !(n°r )!) .

P [X = i ] =
√

n
i

!

pi (1°p)n°i .

The probability mass functions of three binomial random variables with

parameters (10,0.5), (10,0.4), and (10,0.75), respectively, are depicted in

Figure 10. Notice that two of them lean (or skew) away from the center.
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Binomial (10,0.4)
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Binomial (10,0.5)
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0.10

0.15

0.20

0.25

Binomial (10,0.75)

Figure 10: Three binomial probability
mass functions.

Example 54. A system with n components works if at least half of its com-

ponents function. If each component works, independently, with proba-

bility p,

1. for which values of p will a 5-component system be more reliable than

a 3-component one?

2. In general, when is a (2k +1)-component system more reliable than a

(2k °1)-component one?

Solution. For the first question, we know that a 5-component system and

a 3-component system will work, respectively, with probability
√

5
3

!

p3(1°p)2 +
√

5
4

!

p4(1°p)+p5,

√
3
2

!

p2(1°p)+p3.

The 5-component system is more reliable if
√

5
3

!

p3(1°p)2 +
√

5
4

!

p4(1°p)+p5 ∏
√

3
2

!

p2(1°p)+p3
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or, equivalently, if 3(p °1)2(2p °1) ∏ 0; that is if p ∏ 1/2.

In general, consider a system with 2k+1 components and let X denote

the number of the first 2k °1 that function. The system will work if any of

the following three conditions hold:

1. X ∏ k +1;

2. X = k and at least one of the last two components functions; or

3. X = k °1 and the last two components function.

The probability of this system working is

P [X ∏ k +1]+P [X = k](1° (1°p)2)+P [X = k °1]p2.

Similarly, the probability that the smaller system works is± ±By independence.

P [X = k]+P [X ∏ k +1].

This means that the larger system is more reliable if72 72 The probability of the larger system to
work is larger than the one of the smaller
system.0 ∑ P2k+1(works)°P2k°1(works)

= P [X = k °1]p2 °P [X = k](1°p)2

=
√

2k °1
k °1

!

pk°1(1°p)k p2 °
√

2k °1
k

!

pk (1°p)k°1(1°p)2

=
√

2k °1
k

!

pk (1°p)k (p ° (1°p)) =
√

2k °1
k

!

pk (1°p)k (2p °1), (†)

where (†) follows from
°2k°1

k

¢
=

°2k°1
k°1

¢
. Thus, the larger system is more reli-

able if and only if p ∏ 1/2.73 4 73 For any number N , N (2p ° 1) ∏ 0 iff
2N p ∏ N .Recall that a binomial random variable X represents the number of

successes of n independent trials, where each trial has probability p of

occurring. Then X = Pn
i=1 Xi , where the Xi s are independent Bernoulli

random variables. In particular,74 74 Notice that X 2 =X because X can only
take values 0 or 1.

E [Xi ] = P [Xi = 1] = p

V ar (Xi ) = E [X 2]° (E [X ])2 = p °p2 = p(1°p).

From this, it immediately follows that

E [X ] =
nX

i=1
E [Xi ] = np

V ar (X ) =
nX

i=1
V ar (Xi ) = np(1°p).

In addition, if X1 and X2 are two independent binomial random variables

with parameters (ni , p) for i = 1,2, then their sum is also a binomial with

parameters (n1 +n2, p).75 75 It is important that the probability in
both binomials is the same. Xi denotes
the number of successes in ni indepen-
dent trials. So their sum corresponds to
the successes in the sum of their (indepen-
dently made) trials.

TO C O M P U T E T H E D I S T R I BU T I O N function of a binomial X with param-

eters (n, p) it is helpful to use the equation

P [X = k +1] = p
1°p

n °k
k +1

P [X = k].
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Example 55. Let X be a binomial with n = 5 and p = 0.3. Then, starting

with P [X = 0] = (0.7)5 = 0.168 we obtain

It is obviously possible to generalize the
Bernoulli and binomial random variables
to allow more than two values to be taken.
In this case, we would speak of a multino-
mial RV. Understanding the properties of
such RVs is left as an exercise to the inter-
ested student.

P [X = 1] = 3
7

5
1

P [X = 0]

P [X = 2] = 3
7

4
2

P [X = 1]

P [X = 3] = 3
7

3
3

P [X = 2]

P [X = 4] = 3
7

2
4

P [X = 3]

P [X = 5] = 3
7

1
5

P [X = 4]. 4

Poisson

A P O I S S O N R A N D O M VA R I A B L E with parameter ∏ > 0 takes values in the

natural numbers, and has the probability mass function, for every i 2N,76 76 First defined by S. D. Poisson.

P [X = i ] = e°∏
∏i

i !
;

see Figure 11.77 77 To see that this is a mass function, recall

that for all x 2R,
P1

i=1
xi

i ! = ex .

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.05

0.10

0.15

0.20

i

P [X = i ]

Figure 11: Poisson mass function for ∏= 4.

To determine the mean and variance of a Poisson random variable, we

compute its moment generating function, and its two first derivatives.

¡(t ) = E [etX ] =
1X

i=0
eti e°∏(∏i /i !)

= e°∏
1X

i=0
(∏et )i /i !

= e°∏e∏et = exp[∏(et °1)]

¡0(t ) =∏et exp[∏(et °1)]

¡00(t ) = (∏et )2exp[∏(et °1)]+∏et exp[∏(et °1)]

From these equations, we deduce

E [X ] =¡0(0) =∏
V ar (X ) =¡00(0)° (E [X ])2 =∏2 +∏°∏2 =∏.

That is, the mean and the variance of a Poisson random variable are both

equal to the parameter ∏.

Poisson random variables provide good approximations for binomial

variables with parameters (n, p) if n is large and p is small. Suppose that

X is such a binomial random variable and let ∏= np. Then

P [X = i ] = n!
(n ° i )!i !

pi (1°p)n°i = n!
(n ° i )!i !

µ
∏

n

∂i µ
1° ∏

n

∂n°i

= n(n °1) · · · (n ° i +1)

ni

∏i

i !
(1°∏/n)n

(1°∏/n)i
.

Assuming that n is large and p is small, we can deduce that78 78 Recall that limn!1(1+x/n)n = ex .

µ
1° ∏

n

∂n

º e°∏;
µ
1° ∏

n

∂i

º 1;
n(n °1) · · · (n ° i +1)

ni
º 1.

And hence it follows that P [X = i ] º e°∏ ∏
i

i ! .79

79 If a very large number n of independent
trials with a very low probability p of suc-
cess are performed, then the number of
successes is approximately a Poisson with
∏= np.
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Example 56. Suppose that, in average, there are three accidents in the

highway between Trento and Bolzano every week. Compute the probabil-

ity that there is at least one accident this week.

Solution. Let X denote the number of accidents this week. It is reasonable

to assume that there is a large number of cars passing, each with a very low

probability of having an accident. So X should be approximately Poisson

distributed. Thus,

P [X ∏ 1] = 1°P [X = 0] º 1°e°3 30

0!
= 1°e°3 º 0.95. 4

T H E P O I S S O N A P P ROX I M AT I O N R E M A I N S valid in more general circum-

stances. If n independent trials are performed, each with a probability of

success pi ,1 ∑ i ∑ n, then if n is large and each pi is small, the number

of successful trials is approximately a Poisson with mean
Pn

i=1 pi . This re-

mains true without the independence assumption, as long as the depen-

dence is not very strong.

Example 57. Consider n people that leave their umbrella at the entrance

of a bar, and pick up one of the umbrellas randomly when leaving. If X

denotes the number of people that take their own umbrella, then for large

n X approximates a Poisson distribution with mean 1. Intuitively, this is

the case because we can express X = Pn
i=1 Xi , where each Xi is the in-

dicator variable for person i picking their own umbrella. Since each per-

son is equally likely to pick any umbrella, we have that P [X = i ] = 1/n.80 80 That is, we can approximately simulate
the experiment by a binomial with proba-
bility 1/n.

Moreover E [X ] =Pn
i=1 E [Xi ] = n(1/n) = 1.

However, if the j -th person picks up their own umbrella, then the i -th

person (i 6= j ) is equally likely to pick any of the remaining n°1 umbrellas;

more precisely, P [Xi = 1 | X j = 1] = 1
n°1 . This means that Xi and X j are

not independent, but their dependence is extremely weak.81 4 81 Specially when n tends to be large.

Poisson random variables are also reproductive; that is, the sum of two

independent Poisson random variables X and Y is also Poisson. To prove

this, consider the moment generating function of X +Y 82 82 Assume that the means of X and Y are
∏X and ∏Y , respectively.

E [et (X+Y )] = E [etX etY ] = E [etX ]E [etY ]

= exp(∏X (et °1))exp(∏Y (et °1)) = exp((∏X +∏Y )(et °1)).

Since this is the mgf of a Poisson with mean ∏X +∏Y , it follows that X +Y

is indeed a Poisson.83 83 Recall that there is a one-to-one corre-
spondence between moment generating
functions and distributions.

Example 58. The number of hourly customers at a bar is a Poisson with

mean 4. What is the probability that over a 2-hour period there are no

more than 3 customers?

Solution. Let Xi , i = 1,2 be the number of customers during the i -th hour.

Assuming that Xi and X2 are independent, then X +X2 is Poisson with

mean 8. Thus,

P [X1 +X2 ∑ 3] =
3X

n=0
e°8 8i

i !
= 0.423. 4
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CO N S I D E R N OW A S C E N A R I O in which a random number N of events will

occur, and each of them is independently of type 1 or type 2 with proba-

bilities p and 1° p, respectively.84 Let Ni , i = 1,2 denote the number of 84 For example, the number of customers
N in a bar is a random variable; each cus-
tomer is male with probability p and fe-
male with probability 1°p.

events of type i observed. If N is a Poisson with mean ∏ then the joint

mass function of N1, N2 is

P [N1 = n, N2 = m] = P [N1 = n, N2 = m, N = n +m]

= P [N1 = n, N2 = m | N = n +m]P [N = n +m]

= P [N1 = n, N2 = m | N = n +m]e°∏
∏n+m

(n +m)!
.

Since each of the n+m events are independently of type 1 with probability

p, the probability that there are exactly n events of type 1 is the probability

that the binomial random variable (n +m, p) takes value n. That is,

P [N1 = n, N2 = m] = (n +m)!
n!m!

pn(1°p)me°∏
∏n+m

(n +m)!

= e°∏p (∏p)n

n!
e°∏(1°p) (∏(1°p))m

m!
.

The probability mass function of N1 is± ±Recall that
P1

i=1
xi

i ! = ex .

P [N1 = n] =
1X

m=0
P [N1 = n, N2 = m]

= e°∏p (∏p)n

n!

1X

m=0
e°∏(1°p) (∏(1°p))m

m!
= e°∏p (∏p)n

n!
.

Thus, N1 is a Poisson with mean∏p, and similarly N2 is Poisson with mean

∏(1°p). Moreover, these two variables are independent.

This result can be generalised to the case where each event can take any

of r different categories with probabilities p1, . . . , pr . That is, the numbers

of type i events (1 ∑ i ∑ r ) are independent Poisson random variables with

mean ∏pi .

To compute the distribution of a Poisson X with mean ∏we notice that

P [X = i +1]
P [X = i ]

= e°∏∏i+1/(i +1)!
e°∏∏i /i !

= ∏

i +1
.

Starting from P [X = 0] = e°∏, we can use this equation to successively

compute the probability of each successive value.85 85 P [X = i +1] = (∏/(i +1))P [X = i ].

Hypergeometric Random Variables

CO N S I D E R A B I N W I T H N working batteries, and M defective ones. We

randomly pick up a sample of size n.86 If X is the number of working 86 Any of the
°N+M

n
¢

such samples is
equally likely.batteries in the sample, then for all i ,0 ∑ i ∑ min(N ,m)87
87 To simplify, we assume

°m
r
¢
= 0 whenever

r > m or r < 0.

P [X = i ] =
°N

i

¢° M
n°i

¢

°N+M
n

¢ .

A random variable with such a mass function is called hypergeometric with

parameters N , M ,n.
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An intuitive way to see a hypergeometric random variable X is to think

of the sample to be drawn sequentially and defining the random variables

Xi =

8
<

:
1 i -th selection is working

0 otherwise.

Each selection is equally likely to be any of the N + M batteries; hence

P [Xi = 1] = N
N+M . In addition, for any i 6= j ,88 88 Once that we have observed a working

battery, another selection can be any of the
remaining N °1 working batteries.

P [Xi = 1,X j = 1] = P [Xi = 1 |X j = 1]P [X j = 1] = N °1
N +M °1

N
N +M

.

Since X =Pn
i=1 Xi , it follows that

E [X ] =
nX

i=1
E [Xi ] =

nX

i=1
P [Xi = 1] = nN

N +M
,

V ar (X ) =
nX

i=1
V ar (Xi )+2

X

1∑i< j∑n
Cov(Xi X j ).

Since each Xi is a Bernoulli, V ar (Xi ) = P [Xi = 1](1°P [Xi = 1]) = N M
(N+M)2 ,

and for i < j 89 E [Xi X j ] = P [Xi = 1,X j = 1] = N (N°1)
(N+M)(N+M°1) . Thus, 89 Xi X j = 1 iff Xi = 1 =X j .

Cov(Xi ,X j ) = E [Xi X j ]°E [Xi ]E [X j ]

= N (N °1)
(N +M)(N +M °1)

°
µ

N
N +M

∂2

= °N M
(N +M)2(N +M °1)

.

Since there are
°n

2

¢
terms in the sum of covariances, it follows that

V ar (X ) = nN M
(N +M)2 ° n(n °1)N M

(N +M)2(N +M °1)

= nN M
(N +M)2

∑
1° n °1

N +M °1

∏
.

Let now p = N /(N+M) be the proportion of batteries that are functioning.

It then follows that E [X ] = np and V ar (X ) = np(1°p)
£
1° n°1

N+M°1

§
.

If N +M tends to infinity while preserving the same proportion p, then

V ar (X ) converges to np(1°p), which is the variance of a binomial with

parameters (n, p).± ±Is this reasonable to you?

Let X and Y be two independent binomial random variables with pa-

rameters (n, p) and (m, p), respectively. The conditional mass function of

X given that X +Y = k is90 90 Recall that the sum of two binomials
(n, p) and (m, p) is a binomial (n +m, p).

P [X = i |X +Y = k] = P [X = i ,Y = k ° i ]
P [X +Y = k]

= P [X = i ]P [Y = k ° i ]
P [X +Y = k]

=
°n

i

¢
pi (1°p)n°i ° m

k°i

¢
pk°i (1°p)m°(k°i )

°n+m
k

¢
pk (1°p)n+m°k

=
°n

i

¢° m
k°1

¢
°n+m

k

¢ ;

that is, this conditional distribution is a hypergeometric.
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Uniform Random Variables

A R A N D O M VA R I A B L E I S uniformly distributed over the interval [Æ,Ø] if its

density function is (see Figure 13)

f (x) =

8
<

:

1
Ø°Æ Æ∑ x ∑Ø
0 otherwise.

Æ Ø

1
Ø°Æ

x

f (x)

Figure 12: Uniform density function of a
uniform distribution over [Æ,Ø].

The uniform distribution expresses that a random variable is equally

likely to be near any value within [Æ,Ø]. For a sub-interval of I µ [Æ,Ø], the

probability of X taking a value in I is the proportional size of I w.r.t. Ø°Æ:

P [a <X < b] = 1
Ø°Æ

Zb

a
d x = b °a

Ø°Æ .

Æ a b Ø

1
Ø°Æ

x

f (x)

Figure 13: Probability of an interval in a
uniform distribution.

For example, if X is uniformly distributed over the interval [0,10], then

P [X > 6] = 0.4 and P [2 <X < 5] = 0.3.

Intuitively, the mean of a uniform random variable should appear at

the middle of its interval.± We confirm that this is the case:

±Do you understand why?

E [X ] =
ZØ

Æ

x
Ø°Æd x = Ø2 °Æ2

2(Ø°Æ)
= (Ø+Æ)(Ø°Æ)

2(Ø°Æ)
= Æ+Ø

2
.

To compute the variance, we use91

91 x3 ° y3 = (x2 +x y + y2)(x ° y)
E [X 2] = 1

Ø°Æ

ZØ

Æ
x2d x = Ø3 °Æ3

3(Ø°Æ)
= Ø2 +ÆØ+Æ2

3
,

which yields

V ar (X ) = Ø2 +ÆØ+Æ2

3
°

µ
Æ+Ø

2

∂2

= Æ2 +Ø2 °2ÆØ
12

= (Ø°Æ)2

12
.

The value of a uniform (0,1) random variable is called a random number.

Modern computers use mathematical methods to generate sequences of

independent (pseudo-)random numbers.92 Random numbers are used 92 For a true random number generator,
visit http://www.random.org.often in clinical trials, for example in what are called double-blind tests.93
93 In a double blind test, a group of volun-
teers for a trial is divided in two subgroups
(of the same size); one groups is given the
treatment, and the other one is given a
placebo. In this way, it is possible to deter-
mine if (and to what extent) the treatment
is effective. Random numbers are used to
guarantee that the division of the groups is
really random, and not biased by some po-
tentially hidden factor.

T H E N OT I O N O F U N I F O R M random variables can be extended to joint dis-

tributions. The joint probability distribution of X ,Y is uniform over a re-

gion R with area a if f (x, y) = 1/a whenever (x, y) 2 R, and 0 otherwise. For

example, if R is the rectangular region between (Æ1,Æ2) and (Ø1,Ø2), then

it is possible to show that X and Y are independent uniform distributions

over [Æ1,Ø1] and [Æ2,Ø2], respectively.94

94 To show this, simply compute the indi-
vidual distributions of X and Y .

Exponential Random Variables

A C O N T I N U O U S R A N D O M VA R I A B L E with density function

f (x) =

8
<

:
∏e°∏x x ∏ 0

0 x < 0,

http://www.random.org
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for some constant ∏ is called exponential (or exponentially distributed),

and ∏ is often called the rate of the distribution. The cumulative distribu-

tion function of such a variable is, for every x ∏ 0,

F (x) = P [X ∑ x] =
Zx

0
∏e°∏y d y = 1°e°∏x .

This function often arises as the distribution of the amount of time until

some event occurs.95 95 For example, the time until it rains, or
until you receive a new email tend to be ex-
ponentially distributed.

The moment generating function of an exponential is

¡(t ) = E [etX ] =
Z1

0
et x∏e°∏x d x =∏

Z1

0
e°(∏°t )x d x = ∏

∏° t
. t <∏

Differentiating, we get

¡0(t ) = ∏

(∏° t )2

¡00(t ) = 2∏
(∏° t )3 ,

which implies E [X ] =¡0(0) = 1/∏, and V ar (X ) =¡00(0)°1/∏2 = 1/∏2.

The key property of the exponential distribution is that it is memoryless;

that is, for all s, t > 0 it holds that P [X > s + t | X > t ] = P [X > s].96 To 96 Intuitively, under the condition that the
event has not been observed at time t , the
probability of having to wait at least s more
is exactly the same as having to wait s at
the beginning. Conditioning restarts the
clock.

show this, notice that the notion of memory less is equivalent to stating

that P [X>s+t ,X>t ]
P [X>t ] = P [X > s] or, equivalently, that

P [X > s + t ] = P [X > t ]P [X > s].

If X is an exponential random variable, this equation is satisfied because

e°∏(s+t ) = e°∏s e°∏t . Interestingly, the exponential is the only type of ran-

dom variable that is memoryless.

Example 59. Consider 3 identical machines that work for an exponentially

distributed amount of time with parameter ∏. We use two of them until

one breaks, and replace that one with the unused one (call it U). What is

the probability that the next machine to break is U?

Solution. Due to the memoryless property, when U starts working the re-

maining lifetime of the originally working machine still available is equiv-

alent to that of U. Hence, the probability of the next one to break to be U

is exactly 0.5.

Proposition 60. If X1, . . . ,Xn are independent exponential random vari-

ables with parameters ∏1, . . . ,∏n, then min{X1, . . . ,Xn} is an exponential

with parameter
Pn

i=1∏i .

Proof. The proposition follows because97 97 If X is exponential with parameter ∏,
then F (x) = P [X ∑ x] = 1°e°∏x .

P [min{X1, . . . ,Xn} > x] = P [X1 > x, . . . ,Xn > x] =
nY

i=1
P [Xi > n]

=
nY

i=1
e°∏i x = e°

Pn
i=1∏i x .

This property is useful, for example, if we are interested in understand-

ing when will the first component of a system will fail. Another useful

property is that if X is exponential with parameter ∏, then cX is expo-

nential with parameter ∏/c. Indeed,

P [cX ∑ x] = P [X ∑ x/c] = 1°e°∏x/c .
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Normal Random Variables

A R A N D O M VA R I A B L E I S normally distributed with parameters µ and æ2

(denoted as X ªN (µ,æ2)) if it has density

f (x) = 1
p

2ºæ
e°(x°µ)2/2æ2

.

This is a bell-shaped symmetric curve that has its highest value (1/
p

2ºæ) at

µ (see Figure 14).

µ°2æ µ°æ µ µ+æ µ+2æ

1p
2ºæ

Figure 14: The normal density function.

The importance of the normal distribution and its use in statistics arises

from the central limit theorem that, in a nutshell, states that when the

number of observations is large enough, random phenomena tend to ap-

proximate a normal distribution.98 Examples where this can be observed

98 This will be covered more extensively in
the next chapter.

empirically are the heights of people, or the measuring error in physical

quantities.

Intuitively, the mean and variance of a normal RV X ªN (µ,æ2) should

be µ and æ2, respectively. First, we see that E [X °µ] = 0,99 by defining a 99 Remember that E [X +b] = E [X ]+b.

new variable y = (x °µ)/æ:100 100 Using u-substitutions, æd y = d x.

E [X °µ] = 1
p

2º

Z1

°1

(x °µ)
æ

e°(x°µ)2/2æ2
d x

= æ
p

2º

Z1

°1
ye°y2/2d y (*)

= æ
p

2º

≥
°e°y2/2

ØØØ
1

°1

¥
= 0.

To compute the variance, we use u = y and d v
d y = ye°y2/2 to see that101 101 Recall the integration by parts formula:R

u d v
d x d x = uv °

R
v du

d x d x.
Z1

°1
y2e°y2/2d y = °ye°y2/2

ØØØ
1

°1
+

Z1

°1
e°y2/2d y =

Z1

°1
e°y2/2d y .

Then, it follows that

V ar (X ) = E [(X °µ)2] =
Z1

°1

(x °µ)2

p
2ºæ

e°(x°µ)2/2æ2
d x

=æ2
Z1

°1

1
p

2º
y2e°y2/2d y =æ2

Z1

°1

1
p

2º
e°y2/2d y =æ2,

where the last equation follows from 1p
2º

e°y2/2 being the density function

of a normal (with parameters µ= 0 and æ= 1); so the integral over all reals

must be 1.

An important property is that any linear transformation aX + b of a

normal random variable X is distributed as a normal too.102 This means 102 As known already, with mean aµ+b and
variance a2æ2.that the variable Z = X°µ

æ is in fact a normal random variable with mean

0 and variance 1. This is called the standard or unit normal RV and its

distribution is denoted by ©.103 We can simplify statements about X in 103 That is,©(x) = 1p
2º

Rx
°1 e°y2/2d y .

terms of Z . For example, knowing that X < b iff X°µ
æ < b°µ

æ we get that

P [X < b] = P
∑
X °µ
æ

< b °µ
æ

∏
=©

µ
b °µ
æ

∂
.

In other words, for dealing with normal distributions, it suffices to know

the values of©. There are many software systems and tables providing this
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information.104 These tables often provide values only for positive values 104 See the OLE for one such table. We will
see also how to obtain it from R.of x, but since Z is symmetric, negative values can be handled easily. For

example, P [Z < °x] = P [X > x] = 1 °©(x). Thus, if x = 1, we get that

P [Z <°1] = 1°©(x) = 1°0.8413 = 0.1587.

Example 61. Data transmission is subject to channel noise disturbances.

To reduce the the possibility of error, we encode binary messages using

values °2,2, which stand for the original 0 and 1, respectively. Due to

noise, when we submit a message x 2 {°2,2}, it reaches its destination

as R = x + N . The recipient then decodes the message by concluding, if

R ∏ 0.5 that the message sent was 1, and 0 otherwise. We consider that N

has a standard normal distribution.

The probabilities of receiving a wrong signal, due to the noise are

P [R < 0.5 | si g nal = 1] = P [N <°1.5] = 1°©(1.5) = 0.0668

P [R ∏ 0.5 | si g nal = 0] = P [N ∏ 2.5] = 1°©(2.5) = 0.0062. 4

T H E M O M E N T G E N E R AT I N G F U N C T I O N of a standard normal RV Z is

E [et Z ] =
Z1

°1
et x 1

p
2º

e°x2/2d x =
Z1

°1

1
p

2º
e°(x2°2t x)/2d x

= e°t 2/2
Z1

°1

1
p

2º
e°(x°t )2/2d x = e°t 2/2

Z1

°1

1
p

2º
e°y2/2d y = e°t 2/2.

A normal random variable X with mean µ and variance æ2 can be ex-

pressed as æZ +µ. Thus, it moment generating function is

E [etX ] = E [etµ+tæZ ] = etµE [etæZ ] = etµe°(tæ)2/2 = etµ°æ2t 2/2.

We can use this moment generating function to prove that the sum of in-

dependent normal random variables is a normal random variable.± ±Try it yourself. What will be the mean and
the variance of the sum of two indepen-
dent standard normal RVs?

Example 62. The height of European males is a normal RV with mean

177.6cm and standard deviation 4cm. If a person has two (adult) sons,

find the probability that the older one is taller than the younger one by at

least 2cm, assuming that the heights for each child are independent.

Solution. Let X1 and X2 be the heights of the first and second child, re-

spectively. Since °X2 is a normal with mean °177.6 and variance 42 = 16,

X1 °X2 is a normal with mean 0 and variance 32. Then

P [X1 >X2 +2] = P [X1 °X2 > 2] = P
∑
X1 °X2p

32
> 2

p
32

∏

= P [Z > 0.3536] º 1°0.6368 = 0.3632. 4

0 zÆ

Æ1°Æ

Figure 15: P [Z > zÆ] =Æ.

Given any number Æ 2 (0,1), let zÆ be the value such that P [Z ∏ zÆ] =Æ
(see Figure 15). For example, we have that z0.05 = 1.645 and z0.01 = 2.33.

The value zÆ is the 100(1°Æ) percentile of Z.105

105 The name comes because 100(1 ° Æ)
percent of the time Z will fall below zÆ.

Chi-Square

T H E S U M O F n independent standard RVs X =Pn
i=1 Z 2

i is a chi-square RV

with n degrees of freedom. This is denoted by X ª¬2
n .
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The chi-square distribution is additive in the sense that if X and Y are

independent chi-square with n and m degrees of freedom, respectively,

then X +Y is chi-square with n +m degrees of freedom. This holds be-

cause X +Y is the sum of n +m squared independent standard RVs.

If X is chi-square with n degrees of freedom, then for any Æ 2 (0,1) the

value ¬2
Æ,n is the value such that P [X ∏¬2

Æ,n] =Æ.

One application where the chi-square distribution may be of interest

is when dealing with measurement errors in multiple dimensions. If we

have sensors measuring the position of an object in each dimension, then

the square of the distance from the measured to the real value behaves as

a chi-square, assuming that the measuring error is normal.106 106 We will use it later to estimate parame-
ters of a distribution.

The t-Distribution

I F A S TA N D A R D N O R M A L random variable Z and a chi-square random

variable with n degrees of freedom ¬2
n are independent, then the RV

Tn := Z
q
¬2

n/n

has a t-distribution with n degrees of freedom. Figure 16 shows the density

function of Tn for different degrees of freedom.

0

n = 1
n = 2

n = 10

Figure 16: The density function of Tn for
n = 1,2,10.

The t-density is symmetric on 0, and approximates the standard nor-

mal density as n grows. Recall that ¬2
n is the sum of the squares of n inde-

pendent standard normal random variables. From the weak law of large

numbers, it follows that as n grows, ¬2
n/n will tend with probability 1 to

E [Z 2
i ] = 1. Thus, for large enough n, Tn = Z/

p
¬2

n /n will approximately have

the same distribution as Z (see Figure 17).

°3 °2 °1 0 1 2 3

0.1

0.2

0.3

0.4

Z

n = 5

Figure 17: The density function of T5
(solid) and Z (dotted).

The mean and variance of Tn are, for n > 1 and m > 2,

E [Tn] = 0

V ar (Tn) = n
n °2

.

Notice that the variance of Tn tends to 1 from above, as n goes to infinity.

Given Æ 2 (0,1), let tÆ,n be such that P [Tn ∏ tÆ,n] =Æ. Since t is symmetric

at 0, it follows that

Æ= P [°Tn ∏ tÆ,n] = P [Tn ∑°tÆ,n] = 1°P [Tn > tÆ,n].

This means that P [Tn ∏ tÆ,n] = 1°Æ or, equivalently, °tÆ,n = t1°Æ,n . See

Figure 18.

t1°Æ,n 0 tÆ,n

ÆÆ

Figure 18: The areas before °tÆ,n and after
tÆ,n have size Æ.



Sampling

T H E G OA L O F S TAT I S T I C S is to draw conclusions about a large popula-

tion by observing a suitable part (or a sample) of it. For the sample data to

yield meaningful information about the whole population, one must make

some assumptions about the relationship between the two of them. First,

we assume that the measures on the individuals of the population are ran-

dom variables having a shared distribution among the whole population.

If the sample data is chosen randomly, it is reasonable to believe that they

are independent random values from this distribution. Formally, a sample

is a finite set of independent, identically distributed, random variables.107 107 Also called a random sample.

Usually, the population distribution F is not known, and we try to use

the data to draw conclusions about it. Sometimes, we may know the gen-

eral shape of F , but not its precise parameters; for example, that F is nor-

mal or Poisson, but with unknown mean and variance. In this case, we

speak about parametric inferences. If, on the contrary, nothing is assumed

about F (except, perhaps, that it is continuous, or discrete), we deal with

non-parametric inference problems.

From now on, a statistic is a random variable whose value is determined

by the sample data. Two fundamental such statistics are the sample mean

and the sample variance.

Sample Mean and the Central Limit Theorem

CO N S I D E R A P O P U L AT I O N O F elements, each of whom is associated with

a value derived from a random variable with mean µ and variance æ2.

These values are known as the population mean and population variance,

respectively.108 Suppose that we extract a sample from this population, 108 Recall that all the elements in the sam-
ple are equally distributed.and observe the values X1, . . . ,Xn associated to the elements of the sam-

ple. The sample mean is

X :=
Pn

i=1 Xi

n
.

Notice that X is also a random variable; so it has an associated expected

value and variance. Since the RVs in a sample are always independent,

these are given by

E [X ] = E
∑Pn

i=1 Xi

n

∏
= 1

n

nX

i=1
E [Xi ] =µ,

V ar (X ) =V ar
µPn

i=1 Xi

n

∂
= 1

n2

nX

i=1
V ar (Xi ) = æ2

n
.
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In other words, the expected value of the sample mean is the population

mean, while its variance is the population variance divided by the size of

the sample. Thus, X is centered around µ but its variance tends to 0 as

the sample size grows. To understand how the RV X is distributed, we

consider the central limit theorem which in essence states that the sum of

a large number of independent random variables has a distribution that

approximates a normal.109 109 The proof of this theorem is well beyond
the scope of the lecture, but this is a funda-
mental result in statistics.

Theorem 63 (Central Limit Theorem). If X1, . . . ,Xn are independent iden-

tically distributed random variables with mean µ and varianceæ2, then for

a large n the distribution of
Pn

i=1 Xi is approximately normal.110 110 A consequence of this theorem is that
(
Pn

i=1 Xi ° nµ)/(æ
p

n) approximates a
standard normal random variable.

Example 64. An insurance company with 25,000 policy holders observes

that the yearly claim of a holder is a RV with mean (320 and standard

deviation (540. What is the probability that the total yearly claim is above

(8.3 million?

Solution. Let X be the total yearly claim, and Xi the yearly claim of client

i ; then X = P25000
i=1 Xi . From the central limit theorem, X is approxi-

mately a normal with mean 320 · 25000 = 8£106 and standard deviation

540 ·
p

25000 = 8.53£104. Thus,

P [X > 8.3£106] = P
∑
X °8£106

8.53£104 > 8.3£106 °8£106

8.53£104

∏

º P [Z > 3.51] º 0.00023. 4

The central limit theorem has an important use with binomial random

variables. Recall that a binomial X with parameters (n, p) is a sum of n

independent Bernoulli random variables X =Pn
i=1 Xi with E [Xi ] = p and

V ar (Xi ) = p(1°p). Then, if n is large enough, X°npp
np(1°p)

approximates a

standard normal random variable (see Figure 19).111

111 Since the binomial is discrete, and the
normal is continuous, sometimes it is nec-
essary to make adjustments (called conti-
nuity corrections) when using this approx-
imation. See footnote 112.
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0 7 14 21 28 35 42 49 56 63 70

0.05

0.10

(70,0.6)

0 9 18 27 36 45 54 63 72 81 90

0.05

(90,0.6)

Figure 19: Binomial probability mass func-
tions for p = 0.6 with n growing from 10 to
90. The mass converges to a normal den-
sity.

Example 65. An airplane fits 150 passengers. On a busy route, only 30%

of the people that buy the ticket take the plane. If the airline starts selling

450 tickets per flight, what is the probability that the flight is overbooked?

Solution. Let X be the number of passengers in the flight. Assuming that

each customer will independently decide to take the flight or not, X is

a binomial (450,0.3). Since the binomial is discrete and the normal con-

tinuous, we compute P [X = i ] as P [i °0.5 < X < i +0.5] when using the

normal approximation.112 Then, 112 This is the continuity correction.

P [X > 150.5] = P
∑

X °450 ·0.3
p

450 ·0.3 ·0.7
> 150.5°450 ·0.3

p
450 ·0.3 ·0.7

∏
º P [Z > 1.59] = 0.06.
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That is, the probability of overbooking is 6%. 4
We have seen two ways to approximate a binomial: the (discrete) Pois-

son that works well with n large and p small, and the (continuous) normal,

which works when np(1°p) is large.113 113 In practice, the normal is a good ap-
proximation whenever np(1°p) ∏ 10.

T H E C E N T R A L L I M I T T H E O R E M helps to approximate also the distribu-

tion of the sample mean. Indeed, X = Pn
i=1 Xi /n will be approximately

normal when n is large. In particular, X°µ
æ/

p
n

approximates a standard nor-

mal RV.114 Note that this approximation works, regardless of the distribu- 114 Since E [X ] =µ and V ar (X ) =æ2/n.

tion of the original RV X .

Example 66. The measurements for the distance d to a star are affected by

atmospheric disturbances. To get a precise reading, a measurement is re-

peated several times, and their average is used as an estimate for the actual

distance. Assuming that each measurement is an independent random

variable with mean d and standard deviation 2, how many measurements

we need to have a 95% certainty of the estimate being within a value of 0.5

from the actual distance?

Solution. After n measurements, the sample mean X of these measure-

ments will be approximately a normal with mean d and standard devia-

tion 2/
p

n. Thus,115 115 Recall that Z is symmetric around 0.

P [°0.5 <X °d < 0.5] = P

"
°0.5

2/
p

n
< X °d

2/
p

n
< 0.5

2/
p

n

#

º P [°
p

n/4 < Z <
p

n/4] = 2P [Z <
p

n/4]°1.

To get a 95% certainty, we need an n such that 2P [Z <
p

n/4]° 1 ∏ 0.95;

that is, P [Z <
p

n/4] ∏ 0.975. Since P [Z < 1.96] = 0.975, we need n such

that
p

n/4 ∏ 1.96. Thus, at least 62 measurements are needed. 4
While the central limit theorem guarantees that one will approximate

a normal distribution as the sample size n grows, it is not explicit on how

large should n be for the approximation to be good enough. In practical

terms, a sample size of at least 30 will usually suffice, but depending on the

population distribution, a much smaller sample might still work; in some

cases, even 5 measurements would be good enough.116 116 Obviously, the larger the sample, the
better the result will be.

Sample Variance

CO N S I D E R AG A I N A R A N D O M sample from a distribution, and let X be

the sample mean. The sample variance is defined by

S2 :=
Pn

i=1(Xi °X )2

n °1
.

The sample standard deviation is S :=
p

S2.

The sample standard deviation is also a random variable, and hence it

is interesting to know its expected value. To find out E [S2] recall that for

any sequence of numbers x1, . . . , xn , and for x :=Pn
i=1 xi /n,

nX

i=1
(xi °x)2 =

nX

i=1
x2

i °nx2.
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It then follows that (n°1)S2 =Pn
i=1 X 2

i °nX
2

. Taking expectations on both

sides, and using the fact that all Xi s are equally distributed,117 117 Recall that E [Y 2] = V ar (Y ) + (E [Y ])2

for all random variables Y .

(n °1)E [S2] = E

"
nX

i=1
X 2

i

#

°nE [X
2

]

= nE [X 2
1 ]°nE [X

2
]

= nV ar (X1)+n(E [X1])2 °nV ar (X )°n(E [X ])2

= næ2 +nµ2 °n(æ2/n)°nµ2 = (n °1)æ2.

That is, the expected value of S2 is the population variance æ2.

Sampling from a Normal Population

S U P P O S E T H AT W E S A M P L E from a normal distribution X ª N (µ,æ2).

Since the sum of independent normal random variables is also normal,

it follows that X is also a normal, and in particular X°µ
æ/

p
n

is a standard

normal random variable.

Notice that
Pn

i=1(xi ° x)2 =Pn
i=1(xi °µ)2 °n(x °µ)2.118 Then it follows 118 Let yi = xi °µ. Then y = x °µ and

X
((xi °µ)° (x °µ))2 =

X
(yi ° y)2

=
X

y2
i °ny2

=
X

(xi °µ)2 °n(x °µ)2.

that

Pn
i=1(Xi °µ)2

æ2 =
Pn

i=1(Xi °X )2

æ2 + n(X °µ)2

æ2 .

That is,
nX

i=1

µ
Xi °µ
æ

∂2

=
Pn

i=1(Xi °X )2

æ2 +
√p

n(X °µ)
æ

!2

.

Each (Xi °µ)/æ is a standard normal distribution, and they are all inde-

pendent. So, the left-hand side of this equation is a chi-square distribution

with n degrees of freedom.119 The second term on the right is also a chi- 119 A chi-square with n degrees of freedom
is the sum of the squares of n independent
standard normal distributions.

square with 1 degree of freedom. This suggests, given the additive property

of chi-square distributions, that the missing term is also a chi-square with

n °1 degrees of freedom. Indeed, we get the following important result.

Theorem 67. If X1, . . . ,Xn is a sample from a normal population with

mean µ and variance æ2, then X and S2 are independent random vari-

ables with X a normal and (n °1)S2/æ2 a chi-square with n °1 degrees of

freedom.

Importantly, this theorem not only establishes the distributions of the

sample mean and sample variance, but also their independence. The lat-

ter only holds for normal distributions.

Corollary 68.

p
n (X°µ)

S ª tn°1.120 120 That is,
p

n (X°µ)
S has a t-distribution

with n °1 degrees of freedom.

Proof. Theorem 67 states that
p

n (X°µ)
æ is a standard normal independent

from (n ° 1)S2/æ2, which is a chi-square with n ° 1 degrees of freedom.

Hence, p
n(X °µ)/æ

p
(n °1)S2/æ2

=
p

n
(X °µ)

S

is a t with n °1 degrees of freedom.
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Sampling from a Finite Population

G I V E N A F I N I T E P O P U L AT I O N of size N , a random sample of size n is such

that any of the
°N

n

¢
subsets of the population of size n is equally likely to be

chosen.

Suppose that the proportion of the population with a characteristic of

interest is p, and that we have a random sample of size n. For i ,1 ∑ i ∑ n

let Xi be the indicator variable for the i -th element in the sample hav-

ing the characteristic. Then X = Pn
i=1 Xi is the count of elements in the

sample having the characteristic, and the sample mean X = X /n is the

proportion of the sample with the characteristic. We study X and X .

Notice that each Xi is a Bernoulli with parameter p.121 However, they 121 Every Xi is an indicator variable for the
i -th element from the sample to have the
characteristic. But every element from the
population is equally likely to be the i -th
sampled.

are not independent: we know already that P [X2 = 1] = p, but condition-

ing over the outcome of the first sample, we get P [X2 = 1 |X1 = 1] = N p°1
N°1 .

Knowing that we have already seen an element with the characteristic, the

second-sampled element is equally likely to be any of the remaining N °1

elements, but only N p °1 of them have the property.122 122 See Example 57.

When the size of the population N is very large in comparison to the

sample size n, the difference between the unconditional and the condi-

tional probabilities can be dismissed.123 For example, if N = 2000 and 123 If we are sampling from the whole Ital-
ian population, this is a good assumption.
If instead, we sample from the students
in the classroom, it might not make much
sense.

p = 0.5, then P [X2 = 1 | X1 = 1] = 999
1999 = 0.4997; similarly P [X2 = 1 | X1 =

0] = 1000
1999 = 0.5003. Thus, assuming that N is large, we can think of each Xi

as an independent Bernoulli, meaning that X is approximately a binomial

with parameters (n, p).124 Under this view it follows that 124 Notice that X is in fact a hypergeomet-
ric random variable. Thus, we have shown
that binomials approximate hypergeomet-
rics when the number of elements is large
w.r.t. to the number of selections.

E [X ] = np V ar (X ) = np(1°p),

E [X ] = E [X ]/n = p V ar (X ) =V ar (X )/n2 = p(1°p)/n.

Example 69. Suppose that 40% of the population supports a given politi-

cal candidate. Given a random sample of 150 individuals, find

1. the expected value and variance of the number of sampled individuals

that favour the candidate;

2. the probability that more than half of the sample favours the candi-

date.125 125 When polling we are often trying to an-
swer the dual questions: given the values
of the sample, what is the probability that
the full population supports the candidate.
This is a topic for a different chapter.

Solution. The number of people X favouring the candidate in the sam-

ple is a binomial with parameters (150,0.4). So, E [X ] = 150 ·0.4 = 60 and

V ar (X ) = 150 ·0.4 ·0.6 = 36.

To compute P [X ∏ 76], we can use the normal approximation:± ±Do not forget the continuity correction!

P [X ∏ 76] = P [X ∏ 75.5] = P
∑
X °60

6
∏ 75.5°60

6

∏

º P [Z ∏ 2.5833] º 0.0049. 4

It is important to notice that, although we considered it here only for

the Bernoulli case, in general even if the random variables can take more

than two values, when the population is large with respect to the sample

size, we can always assume that the sample data are independent random

variables with the population distribution.126 126 And hence, apply the central limit theo-
rem.



Parameter Estimation

O N E O F T H E M A I N problems in statistics is to understand the distribu-

tion of a population given the data from a sample. Often, we can assume

that the distribution is known up to a vector of unknown parameters. For

example, we may say that it is a normal with unknown mean and vari-

ance,127 or an exponential with unknown rate. In that case, we use the 127 Recall the law of large numbers.

data to estimate the value of the missing parameters. These estimates may

be precise (point estimates), or give a larger range (interval estimates).

Any statistic used to estimate the value of an unknown parameter µ is

called an estimator of µ. The observed value of this estimator is an esti-

mate.

Maximum Likelihood Estimators

S U P P O S E T H AT W E O B S E RV E a sequence X1, . . . ,Xn of random variables

whose joint distribution is known except for an unknown parameter µ. We

want to use the observed values to understant µ. If, for example, the ob-

servations are all from independent exponential random variables with

the same unknown rate µ, their joint density function is

f (x1, . . . , xn) = fX1 (x1) · · · fXn (xn)

=
nY

i=1

1
µ

e°xi /µ (0 < xi <1)

= 1
µn exp

√

°
nX

i=1
xi /µ

!

. (0 < xi <1)

One of the most used type of estimator is the maximum likelihood esti-

mator. Let f (x1, . . . , xn | µ) be the joint probability mass or density function

of the variables X1, . . . ,Xn ;128 this is a function of µ since this parameter is 128 Depending on whether they are discrete
or jointly continuous.unknown. This function f represents the likelihood of observing x1, . . . , xn

when µ is the true value of the parameter. The maximum likelihood es-

timate µ̂ of µ is the value that maximises f (x1, . . . , xn | µ) given the obser-

vation x1, . . . , xn . One useful property for computing this estimator is that

f (x1, . . . , xn | µ) and log
°

f (x1, . . . , xn | µ)
¢

are maximised at the same value

of µ so it suffices to maximise the latter function.

Maximum Likelihood Estimator of a Bernoulli Parameter
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CO N S I D E R A S E QU E N C E O F n independent trials that have each a prob-

ability of success p, which we want to estimate.129 The trial consists of n 129 This is the estimator of the parameter of
a Bernoulli distribution.Bernoulli random variables Xi with an unknown parameter p. Then, for

x = 0,1 we have P [Xi = x] = px (1°p)1°x , and the joint probability mass

function of the data is

f (x1, . . . , xn | p) = P [X1 = x1, . . . ,Xn = xn | p]

=
nY

i=1
pxi (1°p)1°xi = p

Pn
i=1 xi (1°p)n°Pn

i=1 xi .

We want to determine the value of p that maximises this function. This is

easier to do by taking logarithms:

log( f (x1, . . . , xn | p)) =
nX

i=1
xi log p +

√

n °
nX

i=1
xi

!

log(1°p).

To optimise, we can find the point where the derivative (w.r.t. p) evaluates

to 0; that is,± ±Recall that the derivative of log p is 1/p.

d
d p

log( f (x1, . . . , xn | p)) =
Pn

i=1 xi

p
°

n °Pn
i=1 xi

1°p
= 0.

Solving this equation yields the estimator p̂Pn
i=1 xi

= 1°p̂
n°Pn

i=1 xi
, or equiva-

lently

p̂ =
Pn

i=1 xi

n
.

That is, the maximum likelihood estimator of p is the proportion of suc-

cesses observed in the trials.± ±Is this intuitive?

Maximum Likelihood Estimator of a Poisson Parameter

CO N S I D E R N OW I N D E P E N D E N T P O I S S O N random variables X1, . . . ,Xn

all with the same (unknown) parameter ∏. To estimate ∏, we first compute

the likelihood function

f (x1, . . . , xn |∏) =
nY

i=1

e°∏∏xi

xi !
= e°n∏∏

Pn
i=1 xi

Qn
i=1 xi !

.

Taking the logarithm yields

log
°

f (x1, . . . , xn |∏)
¢
=°n∏+

nX

i=1
xi log(∏)° log(

nY

i=1
xi ).

To find the maximum, we evaluate the derivative (w.r.t. ∏) at 0

d
d∏

log
°

f (x1, . . . , xn |∏)
¢
=°n +

Pn
i=1 xi

∏
= 0,

which yields ∏̂=
Pn

i=1 xi

n .

For example, suppose that the number of customers at a bar in one

hour is a Poisson with an unknown parameter ∏ that we want to estimate.

If in a working day of 12 hours, the bar gets 180 customers, then the maxi-

mum likelihood estimate for ∏ is 156/12 = 15.130 130 That is, on average, there will be 15 cus-
tomers every hour.
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Estimators for Normal Parameters

CO N S I D E R N OW T H E M O R E complex case of estimating both parameters

from a normal distribution.131 If X1, . . . ,Xn are independent identically 131 In this case, the mean µ and the stan-
dard deviation æ.distributed normal random variables, their joint density, and its logarithm

are

f (x1, . . . , xn |µ,æ) =
nY

i=1

1
p

2ºæ
exp

µ°(xi °µ)2

2æ2

∂

=
µ

1
2º

∂n/2 1
æn exp

√
°Pn

i=1(xi °µ)2

2æ2

!

log
°

f (x1, . . . , xn |µ,æ)
¢
= ° n

2
log(2º)°n log(æ)°

°Pn
i=1(xi °µ)2

2æ2

As usual, the values of µ and æ that maximise this function can be found

by differentiating and evaluating at 0.

@

@µ
log

°
f (x1, . . . , xn |µ,æ)

¢
=

Pn
i=1(xi °µ)

æ2 = 0,

@

@æ
log

°
f (x1, . . . , xn |µ,æ)

¢
= ° n

æ
+
°Pn

i=1(xi °µ)2

æ3 = 0.

This yields, when solving,

µ̂=
nX

i=1
xi /n

æ̂=
√

nX

i=1
(xi ° µ̂)2/n

!1/2

.

Note that the maximum likelihood estimator for the standard deviation

is not the same as the sample standard deviation,132 but their difference 132 The former divides by n while the latter
divides by (n °1).decreases as n grows.

I N A L L T H E P R E V I O U S cases, the maximum likelihood estimator for the

mean was the sample mean. We show that this is not necessarily the case.

If X1, . . . ,Xn are a sample from a uniform distribution over (0,µ), where µ

is unknown, then we have

f (x1, . . . , xn | µ) =

8
<

:

1
µn 0 ∑ xi ∑ µ,1 ∑ i ∑ n

0 otherwise.

To maximise this function, we need to choose µ to be as small as possible.± ±As µ grows, 1/µn decreases.

Since µ cannot be smaller than any of the observed xi s,± the maximum ±All the xi s are observations that should be
in the interval (0,µ). If µ < xi , then the ob-
servation xi would be impossible.

likelihood estimator of µ is µ̂ = max{x1, . . . , xn}. Thus, the maximum likeli-

hood estimator for the mean of the distribution is max{x1, . . . , xn}/2.133
133 Remember that the mean of a uniform
distribution over (0, a) is a/2.

Interval Estimates

S U P P O S E T H AT W E H AV E a sample from a normal population with un-

known mean µ and known variance æ2. The maximum likelihood estima-

tor for µ is X = Pn
i=1 Xi /n. However, we do not expect the value of X
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to be exactly µ.± For this reason, we often prefer to compute an interval ±In fact, X is a random variable, too.

guaranteed to contain µ (with some degree of confidence). This interval is

found through the probability distribution of the point estimator. In this

example, X ªN (µ,æ2/n) and hence X°µ
æ/

p
n
ª Z . Thus, it follows that134 134 Recall Example 66.

0.95 = P
∑
°1.96 <

p
n
æ

(X °µ) < 1.96
∏

= P
∑
°1.96

æ
p

n
<X °µ< 1.96

æ
p

n

∏

= P
∑
°1.96

æ
p

n
<µ°X < 1.96

æ
p

n

∏
(symmetry)

= P
∑
X °1.96

æ
p

n
<µ<X +1.96

æ
p

n

∏
.

In other words, there is a 95% chance that the true mean µ lies within a

distance 1.96 æp
n

from X . If we observe that X = x, then we have a 95%

confidence that µ is in the interval
µ

x °1.96
æ
p

n
, x +1.96

æ
p

n

∂
.

This is known as the 95 percent confidence interval of µ.135 135 One important note on confidence in-
tervals: a “95% confidence interval” for µ
does not mean that µ has a probability of
95% of belonging to this interval; in fact,
there are no random variables involved to
make a probabilistic statement. What it
says is that when using this method, in
95% of the cases, the interval will in fact
contain the true mean µ (but we will miss
it 5% of the time).

Example 70. When sending a signal µ over a noisy channel, it is received

as µ+N where N is a normal with mean 0 and variance 4. To reduce the

error, each signal is sent 9 times, and the receiver is tasked with estimating

the original signal. Suppose that we receive the signals 5, 8.5, 12, 15, 7, 9,

7.5, 6.5, and 10.5. Then x = 81/9 = 9. Through the maximum likelihood es-

timator, we conclude that the signal was 9. To have a better understanding

of the signal, however, we decide to compute its 95% confidence interval,

which is

(9°1.96
2
3

,9+1.96
2
3

) = (7.69,10.31).

We can guarantee with 95% confidence that the true original signal lies in

this interval. 4

An interval like the one from this example is known as a two-sided con-

fidence interval since we allow for the real mean µ to be on either side of

the point estimator. Alternatively, we may prefer a one-sided confidence

interval; for example, finding a value x such that we can assert, with 95%

confidence, thatµ> x. To find this value x, notice that P [Z < 1.645] = 0.95.

This means that

0.95 = P

"
p

n
X °µ
æ

< 1.645

#

= P
∑
X °1.645

æ
p

n
<µ

∏
.

The 95% one-sided upper confidence interval for µ is (x °1.645æ/
p

n,1),

where x is the observed value of the sample mean. Similarly, the 95% one-

sided lower confidence interval for µ is (°1, x +1.645æ/
p

n).

Example 71. The upper 95% confidence interval estimate of µ from Ex-

ample 70 is (9°1.645 2
3 ,1) = (7.903,1). 4

The use of 95% in the previous discussion is completely arbitrary; it is

possible to compute the confidence intervals for any desired level of con-

fidence.136 Recall that for any Æ 2 (0,1), P [°zÆ/2 < Z < zÆ/2] = 1°a;137 see

136 In practice, one would like the confi-
dence to be high, but the interval not to be
too wide.

137 For Æ 2 (0,1), zÆ is the value such that
P [Z < zÆ] =Æ.
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Figure 20. In the computation of the 95% confidence interval, we used the

fact that for Æ = 0.05,± zÆ/2 = z0.025 = 1.96. Following the same computa- ±0.95 = 1°0.05.

tions, we can generalise the idea to any confidence 1°Æ: the 100(1°Æ)

percent two-sided confidence interval for µ is

(x ° zÆ/2
æ
p

n
, x + zÆ/2

æ
p

n
).

Similarly, the one-sided confidence intervals for the same level of confi-

dence are (x ° zÆ æp
n

,1), and (°1, x + zÆ æp
n

), respectively, where x is the

observed sample mean.

°zÆ2 0 zÆ2

Æ/2Æ/2

Figure 20: P [°zÆ/2 < Z < zÆ/2] = 1°a.

Example 72. Suppose that in Example 70 we are interested in the 99%

two-sided, and one sided upper confidence interval estimates for µ. Then,

knowing that z0.005 = 2.58 and z0.01 = 2.33, we get that these intervals are

9±2.582/3 = (7.28,10.72) and (9°2.332/3,1) = (7.447,1), respectively.

S O M E T I M E S , W E A R E I N T E R E S T E D in finding a small confidence interval,

without reducing the level of confidence. For example, we may want to

guarantee with 99% confidence, that µ is within an interval of length 1.138 138 In this case, the only parameter that we
can manipulate is the sample size.Since z0.005 = 2.58, the 99% confidence interval for µ over a sample of size

n is (x °2.58 æp
n

, x +2.58 æp
n

), which has length 5.16 æp
n

. Thus, to obtain an

interval of length 1, we need to choose an n such that 5.16 æp
n
= 1; that is,

n = (5.16æ)2.139 139 This can be generalised to other levels of
confidence in the obvious way.

Example 73. A packaging machine fills a product to a random weight with

unknown mean and standard deviation of 0.5kg. To be 95% certain that

our estimate of the mean is correct to ±200g, then we need a sample size

n such that 1.96 æp
n
∑ 0.2.140 That is, n ∏ (9.8 ·0.5)2 = 4.92 = 24.01. 4 140 Remember that z0.025 = 1.96.

S U P P O S E N OW T H AT W E want to construct a confidence interval for µ

from a sample of a normal distribution with unknown mean and variance.

Since æ is unknown, we cannot simply build a standard normal distribu-

tion as before.141 However, for the sample standard deviation S,142 we 141 By saying that
p

n(X °µ)/æªN (0,1).
142 S =Pn

i=1(Xi °X )/(n °1).know from Corollary 68 that
p

n (X°µ)
S is a t-random variable with n ° 1

degrees of freedom. Thus, for every Æ 2 (0,1),

P

"

°tÆ/2,n°1 <
p

n
(X °µ)

S
< tÆ/2,n°1

#

= 1°Æ.

Following an analogous argument as for the normal before, if x and s are

the observed values for X and S, respectively, we can say with 100(1°Æ)

confidence that µ 2 (x ° tÆ/2,n°1
Sp
n

, x + tÆ/2,n°1
Sp
n

).143 143 Compare this for the case where the
variance æ is known: the formula is essen-
tially the same, but now we use an estimate
for æ, and need to correct through a t dis-
tribution.

Example 74. Consider again Example 70, but with an unknown noise vari-

ance. To compute a 95% confidence interval for the signal µ, we use again

x = 9, and compute s2 =
Pn

i=1 x2
i °9(x)2

8 = 9.5,144 that is, s = 3.802. Knowing 144 Recall that we have previously shown

that (n °1)S2 =Pn
i=1 X 2

i °nX
2

.that t0.025,8 = 2.306, a 95% confidence interval for µ is
µ
9°2.306

3.802
3

,9+2.306
3.802

3

∂
= (6.63,11.37). 4

Similarly, we can compute the one-sided upper and lower confidence

intervals, respectively as (x ° tÆ,n°1
Sp
n

,1) and (°1, x + tÆ,n°1
Sp
n

).
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To recall, when the standard deviation is known, the computation of

the confidence interval is based on the fact that
p

n(X °µ)/æ ª N (0,1),

while whenæ is unknown we estimate S, and use that
p

n(X °µ)/S ª tn°1.

Notice that the confidence interval does not need to be larger when æ is

unknown. In fact, it is completely possible that the sample variance turns

out to be much smaller than the population variance. However, we can

show that the mean length of the interval is larger when æ is unknown.

More precisely, we can show that tÆ,n°1E [S] ∏ zÆæ.± ±Do you understand why this shows that
the interval length is larger?For this section, we have assumed that the sample was taken from a

normal distribution. Using the Central Limit Theorem, we can extend

these results to any population distribution, provided that the sample is

large enough. Indeed, in that case,
p

n(X °µ)/æ will be approximately

normal, and hence
p

n(X °µ)/S will approximate a t .

CO N S I D E R N OW A S A M P L E from a normal distribution with unknown µ

and æ, which we want to use to predict the value of a newly sampled ele-

ment.145 A natural point predictor for that value is the sample mean X . 145 That is, we observe X1, . . . ,Xn , and we
want to predict the value of Xn+1.If we want an interval predictor, we can notice that X is a normal with

mean µ and varianceæ2/n, and is independent of Xn+1 ªN (µ,æ2). Thus,

Xn+1 °X ªN (0,æ2/n +æ2) or, in other words,

Xn+1 °X

æ
p

1+1/n
ªN (0,1).

Since æ remains unknown, we need to estimate it too. As before, using the

sample variance S2 =Pn
i=1(Xi °X )2/(n °1), which is independent of the

previous random variable,146 we can conclude that 146 See Theorem 67.

Xn+1 °X

S
p

1+1/n
ª tn°1.

Hence, we get that for any Æ 2 (0,1)

1°Æ= P

"

°tÆ/2,n°1 <
Xn+1 °X

S
p

1+1/n
< tÆ/2,n°1

#

= P [X ° tÆ/2,n°1S
p

1+1/n <Xn+1 <X + tÆ/2,n°1S
p

1+1/n].

In other words, if x and s are the observed values of X and S, respectively,

we can predict with 100(1°Æ) percent confidence that

Xn+1 2
≥
x ° tÆ/2,n°1s

p
1+1/n, x + tÆ/2,n°1s

p
1+1/n

¥
.

J U S T A S W E D I D for the mean, one can also construct confidence intervals

for an unknown variance æ2. In this case, recall that (n °1) S2

æ2 ª ¬2
n°1.147 147 Theorem 67.

Since chi-square distributions are not symmetric and are positive,148 we 148 A chi-square is a sum of squares, so it
must take only positive values.need to be careful when building the confidence intervals. In this case,

1°Æ= P
∑
¬2

1°Æ/2,n°1 ∑ (n °1)
S2

æ2 ∑¬2
Æ/2,n°1

∏

= P

"
(n °1)S2

¬2
Æ/2,n°1

∑æ2 ∑ (n °1)S2

¬2
1°Æ/2,n°1

#

.
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In other words, if s2 is the observed sample variance, then a 100(1 °Æ)

confidence interval for æ2 is
√

(n °1)S2

¬2
Æ/2,n°1

,
(n °1)S2

¬2
1°Æ/2,n°1

!

.

One sided intervals can be computed following the same ideas.

Estimating the Difference of Means

CO N S I D E R N OW T W O I N D E P E N D E N T samples X1, . . . ,Xn from a normal

population with mean µ1 and variance æ2
1, and Y1, . . . ,Ym from a different

normal population with mean µ2 and variance æ2
2. We want to estimate

µ1°µ2.149 It can be shown that X °Y is the maximum likelihood estima- 149 For example, if we want to know if a sys-
tem is faster than another.tor for µ1 °µ2, where X and Y are the sample means.

To find confidence intervals, we need first to understand the distribu-

tion of X °Y . We know that X ª N (µ1,æ2
1/n) and Y ª N (µ2,æ2

2/m).

This means that150 150 Remember that the sum of independent
normals is a normal.

X °Y ªN

√

µ1 °µ2,
æ2

1

n
+
æ2

2

m

!

,

and hence
X °Y ° (µ1 °µ2)

r
æ2

1
n + æ2

2
m

ªN (0,1).

If the two variances are known, then it easy to verify that the two-sided

and one-sided 100(1°Æ) confidence interval estimates for µ1 °µ2 are, re-

spectively,
0

@x ° y ° zÆ/2

s
æ2

1

n
+
æ2

2

m
, x ° y + zÆ/2

s
æ2

1

n
+
æ2

2

m

1

A ;

0

@°1, x ° y + zÆ/2

s
æ2

1

n
+
æ2

2

m

1

A ; and

0

@x ° y ° zÆ/2

s
æ2

1

n
+
æ2

2

m
,1

1

A ;

where x and y are the observed sample means.

If the variances are unknown, then we can try to use the same idea of

estimating them through the sample variances

S2
1 =

nX

i=1
(Xi °X )/(n °1)

S2
2 =

mX

i=1
(Yi °X )/(m °1),

and use X°Y °(µ1+µ2)q
S2

1/n+S2
2/m

to construct a confidence interval. However, we do

not know how this random variable is distributed. Unfortunately, this dis-

tribution is very difficult to understand in general. So we focus on the spe-

cial case where æ1 =æ2.151 151 This is, in fact, the only case that we can
feasibly handle.
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Suppose that the population variances are both equal to an unknown

æ2. In that case, we know152 152 See again Theorem 67.

(n °1)
S2

1

æ2 ª¬2
n°1,

(m °1)
S2

2

æ2 ª¬2
m°1.

Independence of the samples implies that these two chi-square distribu-

tions are also independent, and hence153 153 Recall that the sum of two independent
chi-squares is a chi-square with degrees of
freedom equal to the sum of the degrees of
freedom.(n °1)

S2
1

æ2 + (m °1)
S2

2

æ2 ª¬2
n+m°2.

We have also already established that

X °Y ° (µ1 °µ2)
q

æ2

n + æ2

m

ªN (0,1),

and that X ,Y ,S1, and S2 are independent random variables. Define now

S2
p =

(n °1)S2
1 + (m °1)S2

2

n +m °2
.

Then it follows that154
154 (n+m°2)S2

p /æ2 = (n°1)
S2

1
æ2 +(m°1)

S2
2

æ2 .

X °Y ° (µ1 °µ2)
q

S2
p (1/n +1/m)

= X °Y ° (µ1 °µ2)
p
æ2(1/n +1/m)

,q
S2

p /æ2

is a t-distribution with n +m °2 degrees of freedom. Thus, the 100(1°Æ)

confidence interval for µ1 °µ2 is155 155 The one-sided intervals can be easily
derived in the same way.≥

x ° y ° ta/2,n+m°2sp
p

1/n +1/m, x ° y ° ta/2,n+m°2sp
p

1/n +1/m
¥

.

W E N E E D E D TO E S T I M AT E the unknown varianceæ2 to compute this con-

fidence interval. In this case, we had two different samples that provided

two estimates for this variance. The estimator S2
p used is the weighted av-

erage of the two sample variances where the weights are proportional to

their degrees of freedom. In general, this is called the pooled estimator.

Approximate Confidence Interval for the Mean of a Bernoulli

S U P P O S E T H AT W E WA N T to estimate the parameter p of a Bernoulli. If

X denotes the number of successes observed in a sample of size n, then

X is a binomial (n, p). If the sample is large enough, we know that X is

approximately a normal with mean np and variance np(1°p). Thus, for

Æ 2 (0,1)

P

"

°zÆ/2 <
X °np

p
np(1°p)

< zÆ/2

#

º 1°Æ.

Then an approximate confidence region for p is

(

p

ØØØØØ°zÆ/2 <
X °np

p
np(1°p)

< zÆ/2

)

.
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However, this is not an interval.± In order to find an interval, consider ±Do you see why?

p̂ = X /n. Since p̂ is the maximum likelihood estimator of p, it should be

approximately equal to p, and
p

np̂(1° p̂) º
p

np(1°p). Thus, X°npp
np̂(1°p̂)

is still approximately a standard normal RV. This implies then that

P
h

p̂ ° zÆ/2
p

p̂(1° p̂)/n < p < p̂ + zÆ/2
p

p̂(1° p̂)/n
i
º 1°Æ,

which yields the (approximate) confidence interval for p.

Example 75. A poll result expresses that 52% of the population favours

a candidate with a margin of error of ±4%. Knowing that polls are com-

monly expressed as 95% confidence intervals, what does this statement

mean, and what can we say about the size of the poll?

Solution. A 95% confidence interval for the proportion p of people in

favour of the candidate given a sample of size n is

p̂ ± z0.025
p

p̂(1° p̂)/n = 0.52±1.96
p

0.52 ·0.48/n.

Since the margin of error is ±4%, we can conclude that

1.96
p

0.52 ·0.48/n = 0.04.

Which, solving for n yields n = (1.96)2(0.52)(0.48)
(0.04)2 = 599.29. That is, approxi-

mately 599 people were polled. 4

A S B E F O R E , W E M AY be interested in finding a confidence interval of a

bounded size b, and need to find out the size of the sample needed to

achieve this. Notice that the length of this interval is 2zÆ/2
p

p̂(1° p̂)/n.

Unfortunately, we do not known p̂ (or even p) in advance, so we cannot

use this bound to determine the right size n. The trick in this case is to

start with a partial sample. With the first sample, we compute an estimate

p§ of p. Then, using p§ as an approximation for p (and p̂), we compute

the desired sample size by solving

b = 2zÆ/2
p

p§(1°p§)/n

b2 = (2zÆ/2)2p§(1°p§)/n

n = (2zÆ/2)2p§(1°p§)
b2 .

If the original partial sample had k elements, then we need to find an ad-

ditional sample of n °k elements.

Alternatively, notice that the 100(1°Æ)% confidence interval of p will

have length b if n is at least (2zÆ/2)2

b2 p(1 ° p), which is maximised when

p = 1/2. Thus, any sample size n ∏ z2
Æ/2
b2 will be such that the confidence

interval has length at most b.156 156 This sample will often be too large in
comparison to the bound found before,
but it requires no preliminary sampling,
and no additional computations.



Hypothesis Testing

H Y P OT H E S I S T E S T I N G I S A close relative to parameter estimation. The

difference is that, rather than trying to find out the unknown parameters

of a distribution, hypothesis testing tries to verify—or refute—a statement

(hypothesis) about these parameters.157 For example, we can try to verify 157 It is a hypothesis because it is not known
whether it is true or not.whether the mean height of unibz students is 200cm by taking a sample

and computing their height. We want to develop a procedure that veri-

fies whether the observed values are consistent with the hypothesis. If the

value derived from the sample is inconsistent with our hypothesis (e.g. we

get a sample mean of 170cm), then we can reject the hypothesis. Other-

wise (e.g., if the sample mean is 198cm), we cannot.158 Usually, we will 158 In the literature, people often speak of
accepting a hypothesis. This is a confus-
ing use of the word that lead to misinter-
pretations. When one rejects a hypothe-
sis, it means that there is strong evidence
against it. In that sense accepting a hy-
pothesis would mean only that there is no
evidence against it (but there may also be
no strong evidence in its favour).

want to test the opposite of our hypothesis, to be able to reject it.

Significance Levels

S U P P O S E T H AT W E WA N T to test a hypothesis H0 about a parameter µ.

We often call H0 the null hypothesis.159 For example, if µ is the mean of a 159 As mentioned before, the null hypothe-
sis is often the opposite of our claim and
we want to reject it.

normal distribution, one could generate hypotheses such as

H0 : µ = 1 or H0 : µ ∑ 1.

Notice that the latter, when true, will not specify the distribution of the

population. A hypothesis of this kind is called composite as it refers to a

set of possible values. A hypothesis that fully specifies the distribution,

like the former, is simple.

Given a sample of size n, we need to decide when to reject the hypoth-

esis. Formally, a test for H0 is defined through a region in Rn , called the

critical region. The idea is that C defines the region where H0 will be re-

jected; i.e., we reject H0 if the sample (X1, . . . ,Xn) 2 C . One common test

for the hypothesis that the mean µ of a normal with variance 1 is 1 is the

critical region160 160 Compare this with 95% confidence in-
tervals.

C = {(X1, . . . ,Xn) | |X °1| > 1.96
p

n}.

That is, we reject the null hypothesis µ = 1 if the sample mean differs from

1 by at least 1.96
p

n.

Recall that the idea is to check whether H0 is consistent with the obser-

vations in the data. So we should only reject it if the data is very unlikely

when H0 is true. We do this by specifying a value Æ, called the significance
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level such that H0 has probability at most Æ of being rejected when it is

true.161 It is good practice to decide this Æ in advance; in life sciences this 161 That is, we bound the probability of
error of type I—rejecting H0 when it is
correct—by Æ.

is often set to 0.1,0.05, or 0.005.

The usual approach to hypothesis testing is the following. Given a hy-

pothesis H0 : µ 2!, where! is a set of parameter values, we find a point es-

timator µ̆ for µ, and reject H0 if µ̆ is far from !. Obviously, the specific dis-

tance required depends on the distribution of µ̆ under the assumption of

H0 being true, and on the desired significance level. For example, the crit-

ical region computed before rejects the hypothesis if the sample mean162 162 That is, the point estimate for the mean.

is further than 1.96/
p

n from 1. This was chosen to meet the significance

level Æ= 0.05.

The Mean of a Normal Population

CO N S I D E R A S A M P L E F RO M a normal population with an unknown mean

µ and a known variance æ2. Suppose that we are interested in testing the

null hypothesis H0 : µ = µ0 against the alternative hypothesis H1 : µ 6= µ0,

whereµ0 is a given constant. We would like to reject H0 if the sample mean

X is far from µ; that is, we want to define a critical region of the form

C = {X1, . . . ,Xn | |X °µ| > c},

where c is some suitably chosen constant.

If we are interested in a given significance level Æ, we need to find the

value of c that makes the probability of type I error to beÆ; that is, we want

a c such that163 163 Assuming that µ = µ0 (that is, H0
is true), the probability of rejecting H0
should be Æ.

P [|X °µ0| > c |µ=µ0] =Æ.

If µ=µ0, then X ªN (µ0,æ2/n); equivalently,
p

n(X°µ0)
æ2 is a standard nor-

mal distribution. Thus, we are searching for a c such that

Æ= P
∑
|Z | > c

p
n

æ

∏
= 2P

∑
Z > c

p
n

æ

∏
,

or equivalently, P
h

Z > c
p

n
æ

i
= Æ/2. This is solved by setting c

p
n

æ = zÆ/2;

i.e., c = zÆ/2æp
n

. This means that the significance level Æ test is to reject H0

iff |X °µ0| > zÆ/2æp
n

(see Figure 21); or equivalently, if
p

n
æ |X °µ0| > zÆ/2.

°zÆ/2 zÆ/2

p
n
æ (X °µ0)

rejectreject

Figure 21: Critical region for a test.

Example 76. We want to test the hypothesis that a normal random vari-

able X with variance 4 has mean 8.164 From a sample of size 9, we obtain

164 That is, H0 : µ= 8.
X = 9.2. Given a significance level Æ= 0.05, we compute the test statistic

p
n
æ

|X °µ0| =
3
2

(1.2) = 1.8.

Since this number is not greater than z0.025 = 1.96, we cannot reject the

hypothesis.165 4 165 Notice that if we had chosen a more
liberal significance level (like 0.1) then we
could have rejected H0, but under the un-
derstanding that the probability of error of
type I would increase (from 5 to 10% in this
case).

One important question is what is the right significance level to use.

The specific choice depends on the application, but to be fair and correct

it should be decided before the test is made, and not adapted to fit our de-

sired conclusions. Importantly, a lower significance level makes it harder

to reject the hypothesis, decreasing our chance of error in that case.
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The hypothesis test computes first the test statistic v :=
p

n
æ |X°µ0|, and

rejects the null hypothesis H0 : µ=µ0 if Æ∏ P [|Z |∏ v].166 The probability 166 The probability that a standard normal
distribution is farther away than the test
statistic.

P [|Z | ∏ v] is called the p-value of the test. It provides the critical signifi-

cance level in the sense that H0 will be rejected iff the significance level Æ

is greater than or equal to the p-value.

Example 77. In Example 76 we have computed the test statistic to be
p

n
æ

|X °µ0| = 1.8.

Then, the p-value is P [|Z | > 1.8] = 2P [Z > 1.8] = 2 · 0.036 = 0.072. This

means that the null hypothesis H0 : µ = 8 will be rejected for any signifi-

cance level Æ> 0.072.167 167 Recall from Example 76 that the test was
not rejected with Æ= 0.05, but would have
been rejected with Æ= 0.1.

Suppose that instead of 9.2 the sample yielded X = 10.4. Then, the test

statistic is
p

n
æ |X °µ0| = 3.6, which gives the p-value 2P [Z > 3.6] = 0.0003.

The hypothesis would be rejected even for very low significance levels. 4

A N OT H E R T Y P E O F E R RO R is called type II : not rejecting a wrong hypoth-

esis.168 In the case of hypotheses for the mean µ of a normal, we define 168 In our case, failing to reject it when it is
wrong.the function

Ø(µ) := P [not rejecting H0 |µ] = P

"ØØØØØ
X °µ0

æ/
p

n

ØØØØØ∑ zÆ/2 |µ
#

= P

"

°zÆ/2 ∑
X °µ0

æ/
p

n
∑ zÆ/2 |µ

#

The functionØ(µ), called the operating characteristic (OC) curve, describes

the probability of not rejecting H0 when the true mean is µ.

Recall that X is a normal with mean µ and variance æ2/n. In other

words, X°µ
æ/

p
n
ªN (0,1). This means that169 169 We use Pµ to say that this probability

depends on the actual value of µ.

Ø(µ) = Pµ

"

°zÆ/2 ∑
X °µ0

æ/
p

n
∑ zÆ/2

#

= Pµ

"

°zÆ/2 °
µ

æ/
p

n
∑ X °µ0 °µ

æ/
p

n
∑ zÆ/2 °

µ

æ/
p

n

#

= Pµ

∑
°zÆ/2 °

µ

æ/
p

n
∑ Z ° µ0

æ/
p

n
∑ zÆ/2 °

µ

æ/
p

n

∏

= Pµ

∑
µ0 °µ
æ/

p
n
° zÆ/2 ∑ Z ∑ µ0 °µ

æ/
p

n
+ zÆ/2

∏

= Pµ

∑
Z ∑ µ0 °µ

æ/
p

n
+ zÆ/2

∏
°Pµ

∑
Z ∑ µ0 °µ

æ/
p

n
° zÆ/2

∏

=©
µ
µ0 °µ
æ/

p
n
+ zÆ/2

∂
°©

µ
µ0 °µ
æ/

p
n
° zÆ/2

∂
.

The precise values of this function obviously depend on the significance

level Æ. For a fixed significance level, the OC curve is symmetric around

µ0 and depends on µ, and its relation to the hypothesis µ0. It reaches its

maximum 1°Æ at µ = µ0 and decreases as µ gets farther away from this

point.± ±Do you see why?

Example 78. Continuing Example 76, suppose that we want to compute

the probability of not rejecting the null hypothesis H0 : µ= 8 when the true
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value of the mean is 10.170 Then we compute
p

n
æ (µ0 °µ) = 3

2 (8°10) =°3. 170 Recall from Example 76 that the sample
size is 9 and the variance is 4.Using the significance level Æ= 0.05, since z0.025 = 1.96 the probability is

Ø(10) =©(°3+1.96)°©(°3°1.96) =©(°1.04)°©(°4.96) = 0.145. 4

The complement of the OC curve, 1°Ø(µ) is called the power function

of the test. It expresses the probability of rejecting the hypothesis when

the true value is µ.

T H E OC F U N C T I O N I S used to determine the size of a sample needed to

guarantee properties of type II errors. Suppose that we want to guarantee

that the probability of not rejecting H0 : µ = µ0 is approximately Ø. For

each constant µ1, we want to find an n such that Ø(µ1) ºØ.171 That is, 171 Recall that the OC function depends on
µ.

Øº©
µ
µ0 °µ1

æ/
p

n
+ zÆ/2

∂
°©

µ
µ0 °µ1

æ/
p

n
° zÆ/2

∂
.

Unfortunately, we cannot solve this problem analytically. To approximate

n, we can use the following reasoning. Suppose (w.l.o.g.) that µ1 > µ0.

Then µ0 °µ1 < 0 and hence
p

n(µ0 °µ1)
æ

° zÆ/2 <°zÆ/2.

Since the cumulative density function© is always increasing, we get

©

µp
n(µ0 °µ1)

æ
° zÆ/2

∂
∑©(°zÆ/2) = P [Z ∑°zÆ/2] = P [Z ∏ zÆ/2] =Æ/2.

Assuming thatÆ is small enough—as usually done when dealing with con-

fidence levels—it follows that©
≥p

n(µ0°µ1)
æ ° zÆ/2

¥
º 0, which means that

Øº©
µp

n(µ0 °µ1)
æ

+ zÆ/2

∂
. (†)

Notice that Ø 2 (0,1), which means that

Ø= P [Z > zØ] = P [Z <°zØ] =©(°zØ).

Together with (†), it follows that we want some n such that

©(°zØ) º©
µp

n(µ0 °µ1)
æ

+ zÆ/2

∂
; i.e.,

°zØ º
p

n(µ0 °µ1)
æ

+ zÆ/2.

Solving for n then yields± ±Try to verify that the same approximation
would hold if µ1 <µ0.

n º
(zØ+ zÆ/2)2æ2

(µ0 °µ1)2

Example 79. Continuing Example 76, if we want the 0.05 level test for the

hypothesis H0 : µ = 8 to have at least a 75% probability of rejection when

µ= 9.2, then we need a sample of size172 172 Recall that Ø is the probability of not re-
jecting; in this case Ø = 0.25. Recall also
that z0.025 = 1.96 and z0.25 = 0.67.

n º (z0.25 + z0.025)2 ·4
(8°9.2)2 = 4(1.96+0.67)2

1.22 = 19.21.

Thus we need a sample of size 20. Let us confirm this using the OC func-

tion. If the true mean is 9.2, and µ0 = 8 then173 173 Recall that Ø(µ) is

©

µ
µ0 °µ
æ/

p
n

+ zÆ/2

∂
°©

µ
µ0 °µ
æ/

p
n

° zÆ/2

∂
.
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Ø(9.2) =©
√p

20(8°9.2)
2

+1.96

!

°©
√p

20(8°9.2)
2

°1.96

!

=©(°0.723)°©(°4.643) º©(°0.723) = 1°©(0.723) = 0.235.

Thus, in this case, if the true mean is 9.2, there will be a 76.5% chance of

rejecting the null hypothesis H0 : µ= 8. 4

T H RO U G H O U T T H E P R E V I O U S A N A LY S I S, we considered a test that would

reject whenever the observed sample mean is far away from the hypoth-

esis mean, in any direction. Sometimes, a more meaningful hypothesis is

to bound the mean e.g. from above. In this case, our null hypothesis will

be of the form H0 : µ∑ µ0 and should be rejected only if the estimate of µ

is much greater than µ0, but not if it is much smaller.174 In other words, 174 The latter case would fall inside our hy-
pothesis.the critical region becomes

C = {(X1, . . . ,Xn) |X °µ0 > c},

for a suitably chosen c.175 For the test to have a significance level Æ, we 175 Remember that the critical region is
the area of the input variables where the
null hypothesis will be rejected. Compare
this to the two-sided critical region from
Page 60.

need that176

176 The significance level is the probability
of error of type I: rejecting the hypothesis
when it is true. Notice that the condition-
ing is still w.r.t. µ = µ0. This refers to the
extreme case; if the actual mean is smaller
than µ0 it will be harder to reject the hy-
pothesis.

P [X °µ0 > c |µ=µ0] =Æ.

As usual, we use the fact that X ªN (µ,æ2/n); thus if the true mean is µ0

then
p

n(X°µ0)
æ ª N (0,1). We want a c such that P

h
Z >

p
nc
æ

i
= Æ; that is

p
nc
æ = zÆ, or177

177 Compare again with two-sided confi-
dence intervals.

c = zÆæp
n

.

Hence, the test is to reject H0 iff X °µ0 > zÆæ/
p

n. This is the one-sided

critical region.

To compute p-values in a one-side test like this one, we proceed as be-

fore: first use the data to compute the statistic
p

n(X °µ0)/æ. The p-value

is the probability that a standard normal distribution is at least as large as

this number.178 178 If v :=
p

n(X °µ0)/æ is the test statistic,
then the p-value is P [Z ∏ v].

Example 80. Consider again Example 76, where we want to test the hy-

pothesis H0 : µ ∑ 8. The test statistic is
p

n(X °µ0)/æ = 3(1.2)/2 = 1.8.

Then, the p-value is179 1°©(1.8) = 0.036. This means that the test will 179 The p-value in this case is P [Z > 1.8];
see note 178.reject H0 for any significance level above 0.036. 4

The OC function of the one-sided testØ(µ) = P [not rejecting H0 |µ] can

be computed accordingly, dependent on the significance level Æ, by180 180 Under the assumption that the true

mean is µ,
p

n(X°µ)
æ ªN (0,1).

Ø(µ) = P [X ∑µ0 + zÆæ/
p

n] = P

"p
n(X °µ)

æ
∑

p
n(µ0 °µ)

æ
+ zÆ

#

= P [Z ∑
p

n(µ0 °µ)
æ

+ zÆ] =©
µp

n(µ0 °µ)
æ

+ zÆ

∂

Notice that Ø decreases as µ increases.± Recall that ©(zÆ) = 1°Æ. Thus, ±Does this make sense?

Ø(µ0) = 1°Æ.

In the construction, we used the condition µ=µ0 to test the hypothesis

H0 : µ∑ µ0. We need to verify that this test does preserve the significance

levelÆ; i.e., that when H0 is true, the probability of rejecting is bounded by

Æ; equivalently, we may verify that 1°Ø(µ) ∑ Æ holds for all µ ∑ µ0;181 or

181 Remember that the OC function Ø(µ)
expresses the probability of not rejecting
H0 if the true mean is µ.
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alternativelyØ(µ) ∏ 1°Æ. By the previous discussion, we know already that

for all µ∑ µ0, Ø(µ) ∏Ø(µ0) = 1°Æ. Thus, this test does have a significance

level of Æ for the hypothesis H0 : µ∑µ0.

J U S T A S W E H AV E done for µ ∑ µ0, it is also possible to introduce a one-

sided test that bounds the mean by below. In this case, we would reject the

null hypothesis H0 : µ∏ µ0 with significance level Æ iff
p

n
æ (X °µ0) <°zÆ,

and the p-value is equal to the probability that Z gets a value under this

test statistic.± ±Try to write this in symbols, to verify that
you understand the notions.

Example 81. A bottled water company claims that its water contains in

average less than 8mg of sodium per litre. A sample of 25 1-litre bottles

yields an average of 7.5mg of sodium. What can we conclude, with a sig-

nificance level of 5%, if we know that the standard deviation of sodium

content is 1.8mg?

Solution. Remember that the only relevant thing that can be done through

hypothesis testing is to reject the null hypothesis. Thus, in order to support

the claim that the average is less than 8mg, we try to reject the opposite

claim; that is, we intend to reject H0 : µ∏ 8. The test statistic is

p
n(X °µ0)/æ= 5(7.5°8)/1.8 =°1.389,

and hence the p-value is P [Z < °1.389] = 0.082. Since this number is

greater than 0.05, we cannot reject at 5% significance level the null hy-

pothesis: the evidence is not strong enough to support the claim. 4

S O F A R W E H AV E considered a known population variance æ2. If the vari-

ance is unknown, but we still want to test the hypothesis H0 : µ = µ0 for

some constant µ0,182 we want to reject H0 is the sample mean is too far 182 This is not a simple hypothesis any-
more, because it covers a large space de-
pending on the values of æ.

fromµ0, but we need an adequate notion of being far. In the previous case,

we used the fact that X is a normal to reject whenever
ØØØ
p

n(X°µ0)
æ

ØØØ > zÆ/2.

As æ is not known anymore, we use its maximum likelihood estimator S.

To achieve a significance level Æ, recall that if µ = µ0, the RV
p

n(X°µ0)
S

has a t-distribution with n °1 degrees of freedom. In particular,

P

"

°tÆ/2,n°1 <
p

n(X °µ0)
S

< tÆ/2,n°1

#

= 1°Æ.

Thus, we reject H0 (with significance level Æ) iff
ØØØ
p

n(X°µ0)
S

ØØØ> tÆ/2,n°1.

If t is the observed value of the test statistic T =
p

n(X°µ0)
S , then the

p-value of this test is the probability that |T | exceeds |t |.183 This p-value 183 The probability that the absolute value
of a t random variable with n°1 degrees of
freedom is larger than |t |.

tells us the significance levels at which the null hypothesis will be rejected.

Example 82. A worried neighbour claims that students drink an average

of 3 litres of beer every night. To investigate this claim, 25 randomly se-

lected students are observed. The observations yield a sample mean of

2.91l and a sample standard deviation of 0.47l. To verify the claim, we test

the hypothesis H0 : µ= 3. The test statistic is

T =
p

n(X °µ0)
S

=°5 ·0.09
0.47

= 0.9574.



H Y P OT H E S I S T E S T I N G 65

The p-value for this test data is

P [|T24| > 0.9574] = 2P [T24 > 0.9574] = 0.3479.

In other words, the only way to reject this hypothesis is to incur in a very

high significance level (that is, increase the probability of error of type I).

This experiment is consistent with the hypothesis. 4

One-sided hypothesis tests are built in the obvious way. Hence, the hy-

pothesis H0 : µ∑µ0 will be rejected iff
p

n(X°µ0)
S > tÆ,n°1.

Equality of Means of Normal Populations

O F T E N , W E WA N T TO compare two approaches; for example, whether two

software systems are equally efficient. This is usually verified by testing

whether two normal populations have the same mean.

Let X1, . . . ,Xn and Y1, . . . ,Ym be two independent samples from nor-

mal RVs having unknown means µX ,µY , and known variances æ2
X ,æ2

Y .

We want to test the hypothesis H0 : µX =µY . Obviously, X °Y is an esti-

mator for µX °µY . Rewriting the null hypothesis as H0 : µX °µY = 0, we

would like to reject H0 if X °Y is far from zero; i.e., if |X °Y | > c from

some suitable c.

Since X and Y are independent normal distributions, we know that

X °Y ªN

µ
µX °µY ,

æ2
X
n + æ2

Y
m

∂
;184 or equivalently, 184 Remember that the sample of X has

size n and that for Y has size m.

X °Y ° (µX °µY )
r

æ2
X
n + æ2

Y
m

ªN (0,1).

If H0 is true, then µX °µY = 0 and so (X °Y )

,r
æ2

X
n + æ2

Y
m ª Z . Then,

P

2

6664°zÆ/2 ∑
X °Y

r
æ2

X
n + æ2

Y
m

∑ zÆ/2

3

7775= 1°Æ.

In other words, for a significance level Æ, we reject H0 : µX =µY iff185 185 The test statistic (which is useful for
computing the p-value) is the left-hand
side of this inequality.|X °Y |

r
æ2

X
n + æ2

Y
m

∏ zÆ/2.

Following the same idea, the hypothesis H0 : µX ∑ µY will be rejected

with significance level Æ iff

X °Y ∏ zÆ

s
æ2

X

n
+
æ2

Y

m
.

S U P P O S E N OW T H AT T H E variances of the two normals X and Y are un-

known but equal to a value æ2.186 To find an adequate critical region, we 186 That is, æ2 =æ2
X

=æ2
Y

; see note 151.
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first estimate the value ofæ2. In this case, we can use the sample variances

S2
X =

Pn
i=1(Xi °X )2

n °1

S2
Y =

Pm
i=1(Yi °Y )2

m °1
,

and the fact that187 187 See page 57.

X °Y ° (µX °µY )
q

S2
p (1/n +1/m)

ª tn+m°2,

where S2
p is the pooled estimator of æ2.188 Then, if the null hypothesis 188 S2

p =
(n°1)S2

X
+(m°1)S2

Y
n+m°2 .

H0 : µX = µY is true, the statistic X°Yq
S2

p (1/n+1/m)
has a t-distribution with

n +m °2 degrees of freedom. Thus, we reject this hypothesis iff

|X °Y |
q

S2
p (1/n +1/m)

∏ tÆ/2,n+m°2.

The p-values and the one-sided hypothesis tests can be derived in an

analogous manner.



Regression

I N H Y P OT H E S I S T E S T I N G A N D parameter estimation, we are concerned

with understanding a single random variable.189 In practical applications, 189 The only exception we have seen is in
testing the equality of means of two RVs.
However, even in that case, we only check
whether the means are equal or not, with-
out trying to understand the relation be-
tween the two.

we often want to understand the relationship between two or more vari-

ables. For instance, the relationship between age, type of work, and the

number of accidents they have in a year.

In regression, we consider a single response variable (also known as de-

pendent variable) Y that depends on a set of input (or independent) vari-

ables X1, . . . ,Xn .190 Our goal is to understand this dependency; e.g., to 190 Notice the abuse on the naming. In-
dependence in this case refers to the re-
sponse, and has nothing to do with prob-
abilistic independence.

predict, given the age and job description of a person, their likelihood of

having an accident. The simplest such relationship is linear. That is, where

Y = Ø0 +Ø1X1 +·· ·+ØnXn for some Øi 2 R,0 ∑ i ∑ n. If this relationship

was precise, then from n+1 data points we could compute the exact values

of the Øi s, and from them predict the precise response given the values of

the input variables. In practice, we expect the response to be affected by a

random error. That is, we have

Y =Ø0 +Ø1X1 +·· ·+ØnXn +",

where " is a RV with mean 0. That is, E [Y | ~X ] =Ø0+Ø1X1+·· ·+ØnXn .191 191 ~X denotes the whole set X1, . . . ,Xn .

This defines the linear regression of Y on the independent variables Xi .

In this case, the values Øi ,0 ∑ i ∑ n are called the regression coefficients.192 192 If there is only one independent vari-
able Y = Æ+ØX +", we speak of a simple
regression.

The question now is how to obtain these coefficients.

Least Squares Method

W E A R E I N T E R E S T E D I N estimating the parameters of a linear regression

model. For a simple regression problem with estimated coefficientsÆ= a,

Ø= b, and an observation xi of the input variable, the response should be

y = a+bxi . Due to the random error, the response will in fact be a value yi

that may differ from this prediction. Given a set of n data points, we want

to choose the estimator that minimises the sum of the squared errors. That

is, we want to minimise SS = Pn
i=1(yi ° a °bxi )2.193 To achieve this, we 193 The name SS comes from “Sum of

Squares.”equate the partial derivatives of SS w.r.t. the variables a and b to 0.

0 = @SS
@a

= °2
nX

i=1
(yi °a °bxi )

0 = @SS
@b

= °2
nX

i=1
xi (yi °a °bxi ),
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or equivalently,

nX

i=1
yi = na +b

nX

i=1
xi ,

nX

i=1
xi yi = a

nX

i=1
xi +b

nX

i=1
x2

i .

These are known as the normal equations. Substituting y =Pn
i=1 yi /n, and

x = Pn
i=1 xi /n, the first equation becomes a = y °bx. We can now substi-

tute this value in the second equation to get

nX

i=1
xi yi = (y °bx)

nX

i=1
xi +b

nX

i=1
x2

i = ynx °bxnx +b
nX

i=1
x2

i ,

and hence

b =
Pn

i=1 xi yi °nx y
Pn

i=1 x2
i °nx2 .

The line a +bx, where a,b are computed from data using these equations

is called the estimated regression line.

3 4 5 6 7

4

5

6

Figure 22: Some linearly related data, with
its estimated regression line.

Estimator Distribution

S O F A R W E H AV E only assumed that the random error has mean 0. To

study the properties of the estimators, we further assume that these errors

are independent normal RVs with variance æ2. This means that given the

input values Xi the responses Yi are independent normal RV with mean

Æ+ØXi and variance æ2.194 194 Notice that the varianceæ2 does not de-
pend on the input variable, but is a con-
stant associated to the error distribution.
This variance is not necessarily known,
and we must estimate it from the data.

The least squares estimator b of Ø can be expressed as

b =
Pn

i=1(xi °x)yi
Pn

i=1 x2
i °nx2 ,

which is a linear transformation of independent normal random variables

Yi , and hence also a normal RV. We compute its mean and variance.195 195 Recall that
Pn

i=1(xi ° x) = 0 (†). In addi-

tion,
Pn

i=1(xi °x)2 =P
i=1 x2

i °nx2 (‡).

E [b] =
Pn

i=1(xi °x)E [yi ]
Pn

i=1 x2
i °nx2 =

Pn
i=1(xi °x)(Æ+Øxi )

Pn
i=1 x2

i °nx2

=
Æ

Pn
i=1(xi °x)+ØPn

i=1 xi (xi °x)
Pn

i=1 x2
i °nx2

=Ø
Pn

i=1 x2
i °x

Pn
i=1 xi

Pn
i=1 x2

i °nx2 (†)

=Ø

V ar (b) =
V ar

°Pn
i=1(xi °x)yi

¢

°Pn
i=1 x2

i °nx2¢2 =
Pn

i=1(xi °x)2V ar (yi )
°Pn

i=1 x2
i °nx2¢2

=
æ2 Pn

i=1(xi °x)2

°Pn
i=1 x2

i °nx2¢2

= æ2

Pn
i=1 x2

i °nx2 (‡)

In particular this means that b can serve as an estimator of Ø.196 196 An estimator whose expected value cor-
responds to true value being estimated is
called unbiased.
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Recall that a = Pn
i=1 yi /n °bx. Then a is also a linear combination of

independent normal random variables, and hence is also a normal. As we

did with b, we analyse the parameters of this RV.± ±Check out the variance by yourself.

E [a] =
nX

i=1
E [yi ]/n °xE [b] =

nX

i=1
(Æ+Øxi )/n °Øx =Æ+Øx °Øx =Æ,

V ar (a) =
æ2 Pn

i=1 x2
i

n
°Pn

i=1 x2
i °nx2¢ .

T H E D I F F E R E N C E S B E T W E E N T H E responses and their least square esti-

mators yi ° a °bxi , 1 ∑ i ∑ n, are called residuals. To estimate the error

variance æ2 we use the sum of squares of the residuals

SSR =
nX

i=1
(yi °a °bxi )2.

It can be shown that SSR is independent from A and B and that SSR /æ2 is

a chi-square with n °2 degrees of freedom.197 Thus E [SSR /æ2] = n °2, or 197 The actual proof of these facts is outside
the scope of this course.equivalently E [SSR /(n °2)] =æ2.

To summarise, if the responses yi ,1 ∑ i ∑ n are normally distributed

with mean Æ+Øxi and (common) variance æ2, then the least squares es-

timates for Æ and Ø are a = y °bx and b =
Pn

i=1(xi°x)yi
Pn

i=1 x2
i °nx2 , respectively. These

estimators are normally distributed as well:

a ªN

√

Æ,
æ2 Pn

i=1 x2
i

n
°Pn

i=1 x2
i °nx2¢

!

,

b ªN

√

Ø,
æ2

Pn
i=1 x2

i °nx2

!

.

Moreover, the sum of squares of residuals is a chi-square with n°2 degrees

of freedom, and is independent from a and b.

Statistical Inferences

W H E N C O N S I D E R I N G T H E R E G R E S S I O N model Y = Æ+ØX + ", an im-

portant question to ask is whether Ø= 0.198 Thus, we want to test the null 198 If this is the case, then the response does
not depend on the input variable.hypothesis H0 : Ø= 0 vs. the alternative hypothesis H1 : Ø 6= 0. Recall from

our previous discussion that (b°Ø)/
q
æ2/

Pn
i=1 x2

i °nx2 ªN (0,1)199 and is inde- 199 b ªN

µ
Ø, æ2

Pn
i=1 x2

i °nx2

∂
.

pedent from SSR /æ2 ª¬2
n°2. Thus, we get that the variable

qPn
i=1 x2

i °nx2(b °Ø)/æ
q

SSR
æ2(n°2)

=

s
(n °2)

Pn
i=1 x2

i °nx2

SSR
(b °Ø)

has a t-distribution with n °2 degrees of freedom.200 200 Notice that we could not use the normal
distribution observed before because it
depends on the unknown æ2. Instead, we
estimate this variance through SSR /(n°2),
but this requires the use of a t-distribution.

If the null hypothesis is true (i.e., Ø= 0) then

s
(n °2)

Pn
i=1 x2

i °nx2

SSR
b ª tn°2.

Thus, we reject H0 with significance ∞201 if
q

(n°2)Sxx
SSR

|b| > t∞/2,n°2. The 201 We use here ∞ to avoid confusions with
the regression parameter Æ.
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p-value can be computed as usual: from the test statistic v =
q

(n°2)Sxx
SSR

|b|,
the p-value is P [|Tn°2| > v] = 2P [Tn°2 > v].

To get a confidence interval estimator for Ø we proceed as usual. Given

0 < ∞< 1, we know that

P

"

°t∞/2,n°2 ∑
s

(n °2)Sxx

SSR
(b °Ø) ∑ t∞/2,n°2

#

= 1°∞.

Solving for Ø yields the 100(1°∞)% confidence interval estimator of Ø± ±Try the computations yourself.

√

B °
s

SSR

(n °2)Sxx
t∞/2,n°2,B +

s
SSR

(n °2)Sxx
t∞/2,n°2

!

.

I F O N E I S I N S T E A D interested in inferences concerning the parameter Æ,

one can proceed in the exact same manner. Indeed, we observe that
s

n(n °2)Sxx

SSR
Pn

i=1 x2
i

(a °Æ) ª tn°2.

From this fact, we can derive confidence intervals, and hypothesis tests,

alongside their p-values.± ±Try it yourself!

S U P P O S E N OW T H AT W E have a given input value x0 and we want to pro-

duce a confidence interval or test a hypothesis about the mean response

w.r.t. this value. Since we do not know the parameters Æ,Ø, we can esti-

mate them through a and b as before. But to obtain a meaningful confi-

dence interval, we must understand the distribution of a +bx0.

Note that a+bx0 = y °b(x°x0) =Pn
i=1 yi

°
1/n ° c(xi °x)(x °x0)

¢
, where

c is a constant.202 Each yi is an independent observation of a normal ran- 202 Recall that

a = y +bx

b =
Pn

i=1(xi °x)yi
Pn

i=1 x2
i °nx2 .

The denominator of b is a constant that we
will call c in the following analysis.

dom variable, and all the other parameters in the expression are constants

given the data. Hence, a+bx0 is a linear combination of independent nor-

mal random variables, which means that it is also a normal itself. Now we

just need to know its mean and its variance.

E [a +bx0] = E [a]+x0E [b] =Æ+Øx0

V ar (a +bx0) =
nX

i=1

°
1/n ° c(xi °x)(x °x0)

¢2 V ar (yi )

=æ2
nX

i=1

°
1/n2 °2c(xi °x)(x °x0)/n + c2(xi °x)2(x °x0)2¢

=æ2

√
1/n °2c(x °x0)/n

nX

i=1
(xi °x)+ c2(x °x0)2

nX

i=1
(xi °x)2

!

.

Since
Pn

i=1(xi °x) = 0 and
Pn

i=1(xi °x)2 =Pn
i=1 x2

i °nx2 = 1/c, it then follows

that

V ar (a +bx0) =æ2 °
1/n + c(x °x0)2¢ .

In brief, a + bx0 ª N
°
Æ+Øx0,æ2 °

1/n + (x °x0)2/Sxx
¢¢

. To handle the

unknown æ2, recall that SSR /æ2 ª¬2
n°2. Thus

a +bx0 ° (Æ+Øx0)
p

1/n + (x0°x)2/Sxx

p
SSR/n°2

ª tn°2.

Using this fact, we can then build confidence intervals and hypothesis

tests for Æ+Øx0 as usual.± ±Exercise!
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Quality of the Model

W H E N T RY I N G TO M E A S U R E the variability of the response variable, one

can use the squared error Sy y =Pn
i=1(yi ° y)2. In this case, however, there

are two different factors that influence the variability of the response. On

the one hand, each value yi depends on the input value xi that may be

different for each i . On the other hand, the response is a random variable

with variance æ2.203 203 Even with identical values on the input
variable, the responses may be different.An important question is how much of this variation is caused by the

different input values, and how much depends on the inherent uncer-

tainty of the response. To answer this question, observe that the value

SSR =Pn
i=1(yi °a°bxi )2 can be interpreted as the remaining squared vari-

ation once that the influence of the input values has been taken into ac-

count. Thus Sy y °SSR measures the amount of variation that is explained

by the input values. We can then define the coefficient of determination

R2 := Sy y°SSR
Sy y

, which expresses the proportion of variation explained by

the input values.

Obviously, R2 is always between 0 and 1. Intuitively, a high coefficient

of determination (close to 1) indicates that most of the variation results

from the different input values, and the opposite holds for a low R2. This

value is used as an indicator of the fitness of the model: the higher R2 is,

the regression model is considered to fit well the data.

N OT I C E T H AT L I N E A R R E G R E S S I O N can be applied to any piece of data,

regardless of its shape. However, the quality of the model requires a linear

dependency between the variables. Sometimes a visual exploration suf-

fices to rule out the possibility of a linear model (see Figure 23). However,

a direct visualisation cannot deal with more veiled cases of non-linearity.
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Figure 23: Three data samples with their
linear regression fitting model. For the
third plot, the linear model is obviously in-
adequate.

As a means to assess the quality of the model, one can analyse the resid-

uals yi ° (a +bxi ). Remember that each yi is a normal; a +bxi estimates

its mean, and SSR /(n ° 2) estimates its variance.204 Then, the standard-

204 Recall the assumption that the variance
of the error is constant for all input values.

ised residuals yi°(a+bxi )p
SSR /(n°2)

should all be approximately distributed as a stan-

dard normal RV, and they are all independent. Then, approximately 95%

of these residuals should lie in (°2,2),205 and they should show a random

205 P [°1.96 < Z < 1.96] = 0.95.

behaviour without any obvious patterns. Figure 24 plots the standardised

residuals from the first two data sets of Figure 23. The second plot shows
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Figure 24: Residuals for the first two plots
in Figure 23. The first one appears ran-
dom, and hence is a good fit for the linear
model. The second shows a pattern that
suggests dependencies between the resid-
uals.

a pattern that suggests that the linear model is not adequate for this data.
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Non-linear Responses

EV E N W H E N T H E R E S P O N S E does not depend linearly on the input vari-

able, if the type of dependency is known one can sometimes transform

the variables to obtain a linear model. The usual scenario is when the re-

sponse variable grows exponentially on the input, that is, when the rela-

tionship is of the form w = c ·d x , where c and d are two constants that

we want to estimate.206 By taking the logarithm in both sides, we get 206 Of course, one of them might be known,
but the more general setting is where they
are both unknown.

log(w) = log(c)+x log(d). This now looks like the linear model y =Æ+Øx.

At this point, we can use a standard linear regression process (that is,

least squares) to estimate the parameters Æ and Ø with a and b, respec-

tively. Then, w = exp{a +bx}.

F O R O U R R E G R E S S I O N M O D E L, we have assumed that the variance of

the the response is fixed for any input value. Often, a more realistic as-

sumption is that these variances are dependent on the input variable, but

known up to a proportionality constant. More formally, we know that for

each piece of data, V ar (yi ) = æ2/wi . As before, to obtain a linear model, we

want to minimise the sum of squares, but in this case the weight of each

error should be proportional to the variance.207 That is, we choose the 207 It should be clear that for the data
points where the variance of y is larger, we
should expect to observe larger errors. To
handle all the data uniformly, we weight
each point proportionally to their vari-
ance.

estimators a,b that minimise the sum

nX

i=1

°
yi ° (a +bxi )

¢2

V ar (yi )
= 1
æ2

nX

i=1
wi (yi °a °bxi )2.

To find these values, we differentiate with respect to a and b and equate

the derivatives to 0, as usual. Hence, we obtain

nX

i=1
wi yi = a

nX

i=1
wi +b

nX

i=1
wi xi ,

nX

i=1
wi xi yi = a

nX

i=1
wi xi +b

nX

i=1
wi x2

i .

Solving these equations, we obtain the weighted least square estimators.

In general, it is not always obvious to know how does the variance de-

pend on the input variable. Still, there are many cases where this can be

reasonably expected. A simple example is if one is trying to understand the

relationship of water used in a house, dependent on the number of people

living in it. Assuming that the amount of water used by each person is in-

dependent with a fixed variance, then the variance of use in a household

will be proportional to the number of people in the house. Sometimes, the

variance dependency can be understood by an analysis of the scatter plot

of the data and its standardised residuals, as depicted in Figure 25.
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Figure 25: The variance of the data (ob-
served by the margin of error) seems to in-
crease with x.

A S W E H AV E A L R E A DY seen, the relationship between the independent

and the response variables may not always be linear. Still, the dependency

may follow a polynomial of the form y =Ø0+Ø1x+Ø2x2+·· ·+Ør xr +". In

this case, we want to estimate the regression coefficients Øi . Generalising

the idea of linear regression, given a data sample of size n, we compute

the least square estimators b0, . . . ,br of Ø0, . . . ,Ør , which are the values that
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minimise
nX

i=1
(yi °Ø0 °Ø1x ° · · ·°Ør xr )2.

Following the usual approach,208 we obtain the so-called normal equa- 208 Equating the partial derivatives to 0.

tions

nX

i=1
yi = b0n +b1

nX

i=1
xi +b2

nX

i=1
x2

i + . . .+br

nX

i=1
xr

i

nX

i=1
xi yi = b0

nX

i=1
xi +b1

nX

i=1
x2

i +b2

nX

i=1
x3

i + . . .+br

nX

i=1
xr+1

i

nX

i=1
x2

i yi = b0

nX

i=1
x2

i +b1

nX

i=1
x3

i +b2

nX

i=1
x4

i + . . .+br

nX

i=1
xr+2

i

...
...

nX

i=1
xr

i yi = b0

nX

i=1
xr

i +b1

nX

i=1
xr+1

i +b2

nX

i=1
xr+2

i + . . .+br

nX

i=1
x2r

i

The most important question to answer in polynomial regression is

what degree of a polynomial to use. This requires a careful analysis re-

garding the trade-off between fitting and prediction. On the one hand, a

polynomial with a higher degree will be able to fit the data better, produc-

ing smaller residuals.209 However, recall that the values of y are subject

209 In principle, a polynomial of degree n
can perfectly fit a data sample of size n if
all the values of the independent variable
are different.to a random noise. A better fitness in this case will mean fitting the noise

as well, which may reduce the predictive power of the model.210 As a rule
210 This is known as overfitting.

of thumb, you want to have the smallest degree that matches the general

shape observed in the scatter plot of the data.
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To understand this, consider again the third plot from Figure 23. A vi-

sual inspection suggests that the data follows a quadratic pattern. Thus,

we may try to fit it through a quadratic regression method. The resulting

curve, on the left of Figure 26, provides a good approximation to the ob-

served data. A polynomial of degree 15 (Figure 26, right), fits the observed

data much better, but makes some unreasonable predictions around the

limit values.
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15 Figure 26: Data from Figure 23 fitted
through polynomial regression of degree
2 (left) and 15 (right). The fitting curve
is represented by a dashed line. Notice
that the polynomial of degree 15 approxi-
mates the data better, but predicts the re-
sponse for values of the independent vari-
able around 1.5 and around 19.5 to be far
away from all observations. This is a clear
case of over-fitting.
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