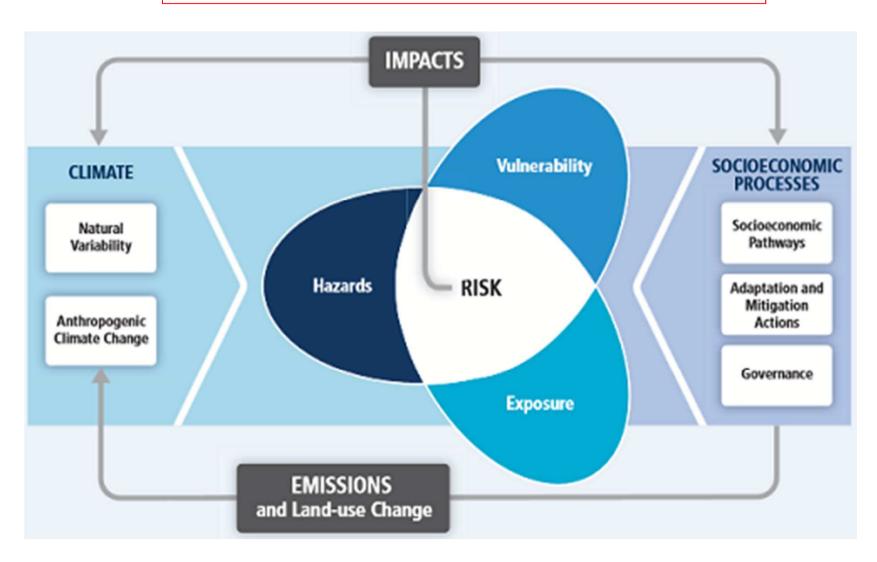
MANAGEMENT OF NATURAL HAZARDS IN MOUNTAIN BASINS


Definition and of modelling of natural risks

Dr. Francesco Comiti Academic year 2014/2015

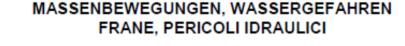
Credits to Dr. Fausto Guzzetti (CNR-IRPI)

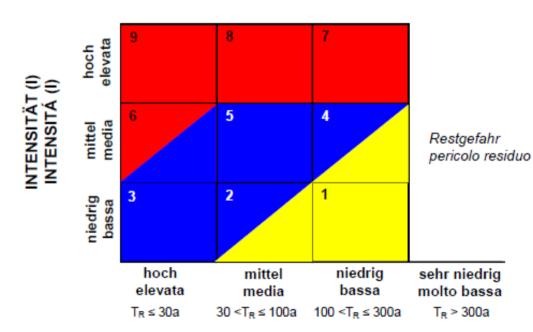
What is risk ?

Risk = Hazard x Exposure x Vulnerability

• Combination of the magnitude (e.g. intensity) of a natural process and its frequency of occurrence (recurrence interval)

Magnitude-frequency relationship !


✓ Related only to climatic and geological characteristics of an area


Assessment of intensity differs for each natural process

- Floods
- Landslides
- Debris flows
- Avalanches
- Earthquakes
- Volcanic eruptions
- Wind storms
- Tsunamis

• The Swiss Intensity-Frequency matrix (BUWAL, 1998):

GEFAHRENSTUFEN - GEFAHR (H) LIVELLO DI PERICOLOSITÁ - PERICOLO (H)

Legende <mark>(</mark> H) – legenda (H):				
	H4	sehr hoch – molto elevato		
	H3	hoch – elevato		
	H2	mittel – medio		

T_R = Wiederkehrdauer – tempo di ritorno

EINTRITTSWAHRSCHEINLICHKEIT PROBABILITÁ DI ACCADIMENTO

• Flood and debris flow hazards

Intensity classes are based on *water depth* (h) and *velocity* (v) for a flood, and on *deposition depth* (M) and/or *velocity* for debris flows. Lateral erosion depth (d) has also to be considered

	Low intensity	Medium intensity	High intensity
Values used in the Province of Bolzano Flood	<i>Intensità bassa</i> h < 0,5 m opp. v x h < 0,5 m²/s	Intensità media h = 0,5-2 m opp. $v \ge h = 0,5-2 m^2/s$	Intensità alta h > 2 m opp. $v \ge h > 2 m^2/s$
Debris flo	w non noto	$\begin{array}{c} M \leq 1 \ m \\ opp. \\ v \leq 1 \ m/s \end{array}$	M > 1 m e $v > 1 m/s$
Erosion dej	oth <u>d < 0,5 m</u>	d = 0,5–2 m	d > 2 m

What is the hazard of a natural process ? **Return period** Rockfall hazard High Intensity classes are based on the **High Hazard** kinetic energy (E) of the rock 300 kJ Intensity [kJ] Medium fragments and on their *dimensions* (D) TRUN CONTRACT 30 kJ ON Hazart Low Medium 8 High 300 years Low year years Medium High Low Rockfall intensity intensity intensity adute cassi (a main of Em) E > 300 kJ300 kJ > E > 30 kJE < 30 kJRocks D<2m 1-1-a-1-1 /a E > 300 kJRocks D>2m TOTH FIGHTLE HIGH

Values used in the Province of Bolzano

• Landslide hazard

Intensity classes are based on the combination of *velocity* and *geometric severity* (slide thickness)

Velocity classes:

- < 13 m/month (ca. 45 cm/day)</p>
- 13 m/month ÷ 3 m/min
- > 3 m/min

Thickness classes:

- < 2m
- 2 10 m
 - > 10 m

Values used in the Province of Bolzano

Approach taken from Cruden & Varnes (1996) and BUWAL (1998)

• Snow avalanche hazard

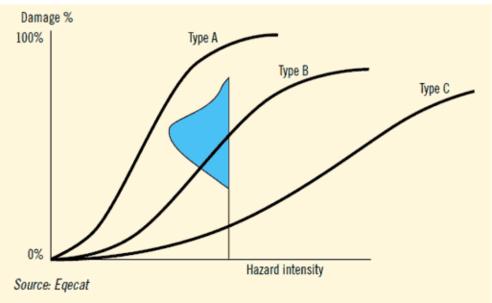
Intensity classes are based on the *pressure* (p) exerted by the avalanche to a large surface normal to the direction of propagation

Low intensity	Medium intensity	High intensity	
Intensità bassa	Intensità media	Intensità alta	
$p < 3 \ kN/m^2$	$3 \le p \le 30 \ kN/m^2$	$p > 30 \ kN/m^2$	

Values used in the Province of Bolzano

What is exposure ?

- People, assets and activities potentially threatened by a hazard
- Measured in number (of people, of cultural/natural heritage sites) and in monetary terms (objects)



What is vulnerability ?

- Physical vulnerability
- Degree (from 0 to 1) of damage/loss of a certain exposed object

- Vulnerability is zero if the exposed object is able to resist without any damage or loss of functionality a given hazard
- Vulnerability is equal to 1 (100%) if the object completely loses its value
- Vulnerability is a function of:
 - ✓ Hazard type
 - ✓ Hazard intensity and duration
 - ✓ Object typology
 - ✓ Object maintenance

What is vulnerability ?

Social vulnerability

pre-existing condition that affects a society's ability to withstand (resistance) and recover (resilience) from a disruptive event

- Social vulnerability is a function of:
 - ✓ Hazard type and intensity
 - ✓ Hazard period of occurrence
 - ✓ Prior risk perception
 - ✓ Preparedness to the event
 - ✓ Demography (age and gender)
 - ✓ Economic and education levels
 - ✓ Social structure

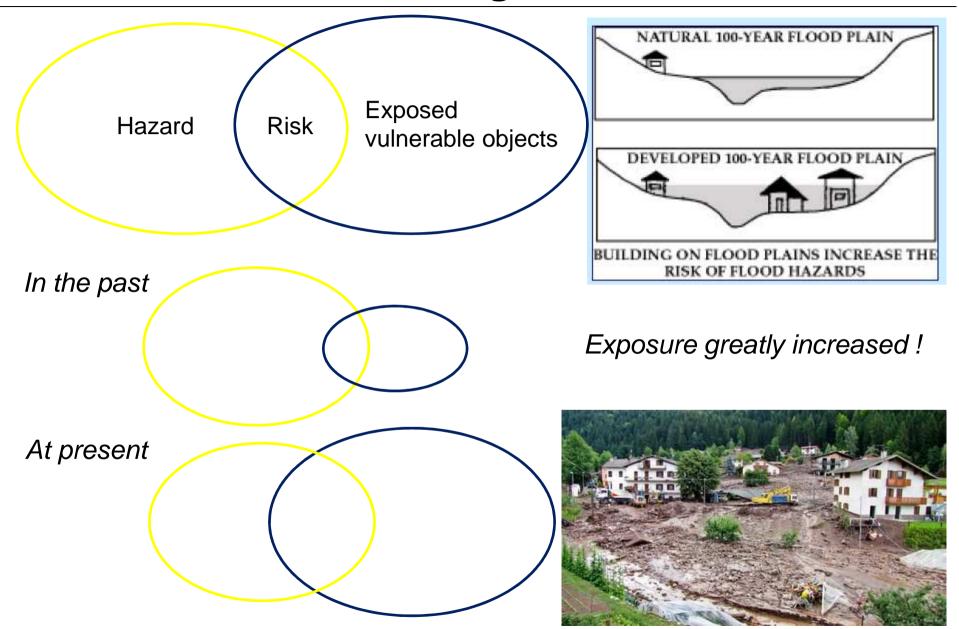
https://www.youtube.com/watch ?v=gkybZKVYMWc

https://www.youtube.com/watch ?v=kIZS3rDjJjg

https://www.youtube.com/watch ?v=z6PmR2hYW3E

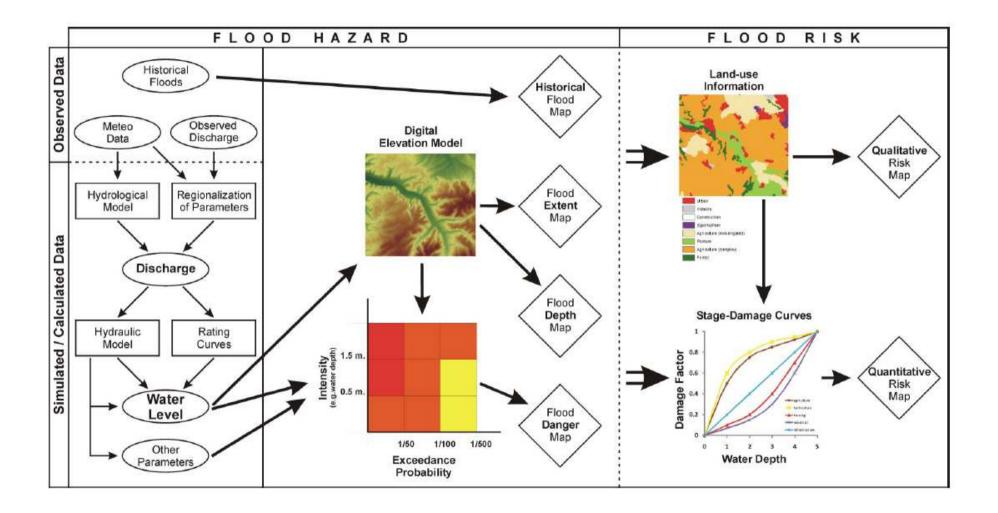
Time-dependance of risk

- Most hazards can be considered to be invariant with time over relatively short periods (if external conditions remain constant)
- Exposure and vulnerability vary with time, even at the daily scale !



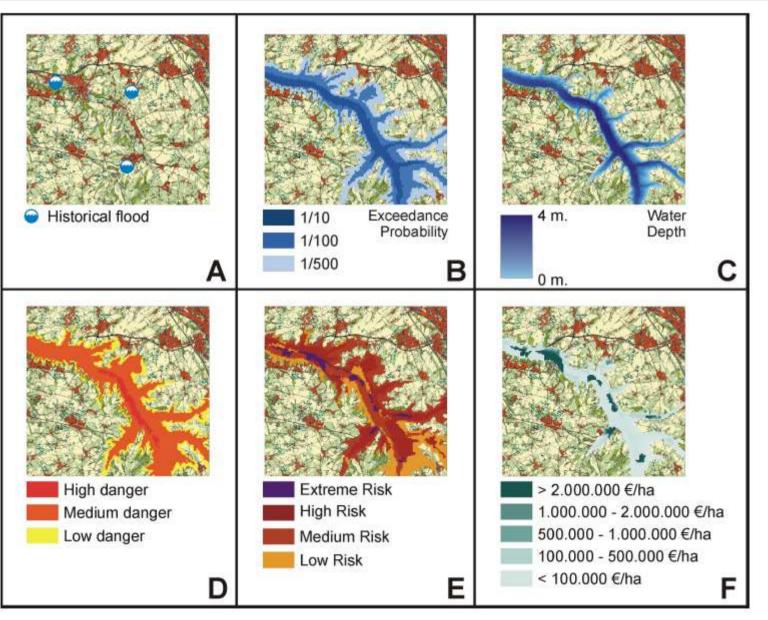
Risk is strongly time-dependent !

General historical change in natural risks


Prediction of natural risk

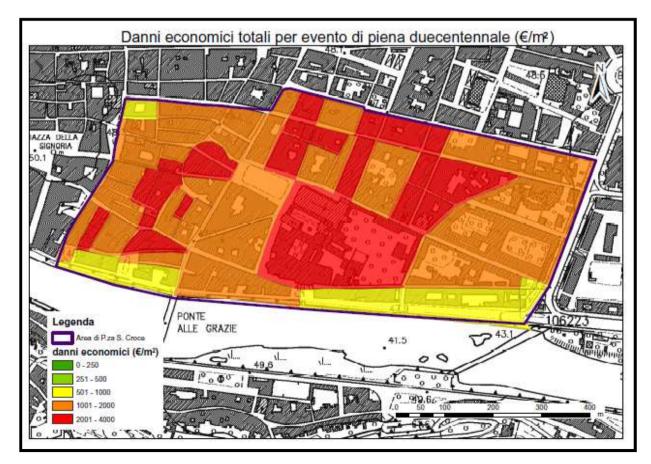
For all the possible hazards within a given region, managers have to assess the following:

- Location (geographical extension)
 Magnitude (intensity)
 Frequency (recurrence interval)
 Season/period of occurrence
 Potential direct damages/victims
 - Indirect consequences


Potential damage(or vulnerability)mapping

Example: flood risk maps

De Moel et al (2009)


Example: flood risk maps

De Moel et al (2009)

Potential damage maps

- Different spatial scales (from continental to regional to municipal)
- Often based on land use categories (qualitative, at regional scale)
- Expressed in monetary terms (civil/rural appraisal, at local scale)
- Generally static (do not account for fluxes of people/vehicles)
- Vulnerability often assigned to 1 in cases of high-energy processes

Arrighi (2012)

Hazard maps

- Different spatial scales (from continental to regional to municipal
- Different spatial resolution (from to tens of meters to few meters)
- Different objectives (regional to municipal land planning, emergency plans)

Regional scale

- Increased spatial and temporal resolution
- Increased need for accurate data
- Increased legal value of the map

Local scale

Hazard maps: «Floods» Directive

«Floods» EU Directive (2007)

Article 6

Flood hazard maps shall cover the geographical areas which could be flooded according to the following scenarios:

- floods with a low probability, or extreme event scenarios;
- floods with a medium probability (likely return period ≥ 100 years);
- floods with a high probability, where appropriate.

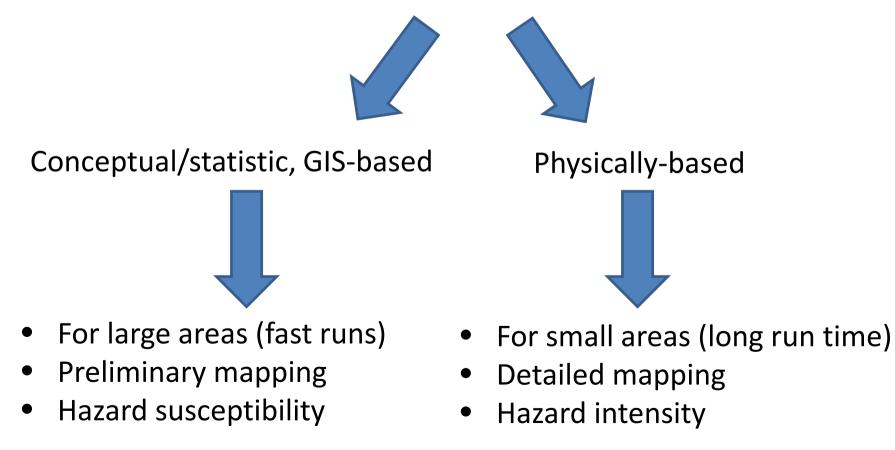
For each scenario the following elements shall be shown:

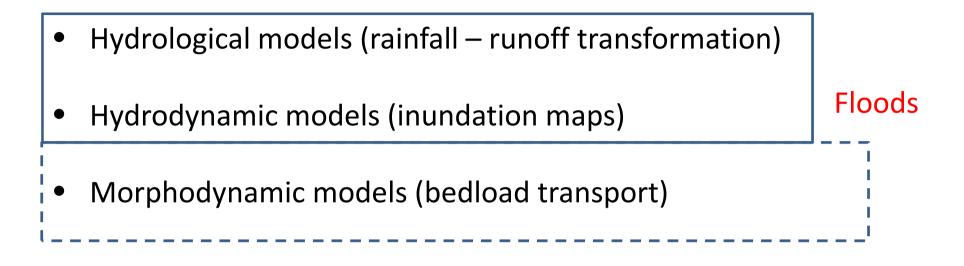
- the flood **extent**;
- water **depths** or water level, as appropriate;
- where appropriate, the flow **velocity** or the relevant water flow.

Risk maps: «Floods» Directive

Article 6

Flood risk maps shall show the potential adverse consequences associated with flood scenarios and expressed in terms of the following:


(a) the indicative **number of inhabitants** potentially affected;


(b) **type of economic activity** of the area potentially affected;

(c) installations as referred to (...) concerning integrated pollution prevention and control which might cause **accidental pollution** in case of flooding and potentially affected protected areas (...)

d) other information (...) useful such as the indication of areas where floods with a high content of **transported sediments and debris floods** can occur and information on other significant sources of pollution.

- A model is a simplification of reality, useful to make predictions testing different scenarios
- Physical (laboratory) and **numerical** (computer) models

- Debris flow models
 Often a single model used with different parameters
- Landslide models (susceptibility and geotechnical)
- Rockfall models (trajectoies, energies)

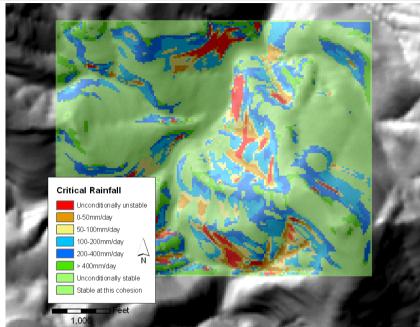
• Landslides

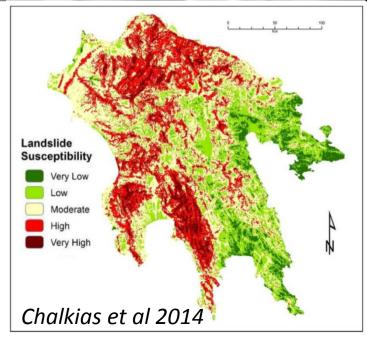
LANDSLIDES ARE NATURAL PHENOMENA CHARACTERIZED BY HIGH RANDOMNESS AND LOW PREDICTABILITY

LANDSLIDES ARE PREDICTABLE, BUT WITH SIGNIFICANT UNCERTAINTY

SINGLE LANDSLIDE

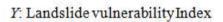
PREDICTING ... WHAT?


MANY LANDSLIDES

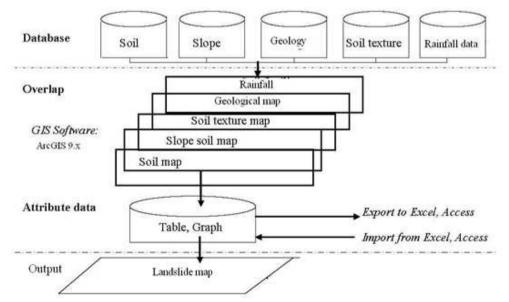


Landslide susceptibility maps

(FOR SHALLOW LANDSLIDES AT REGIONAL/LARGE BASIN SCALE)


- PHYSICALLY-BASED (OR BETTER "CONCEPTUAL")
 - INFINITE SLOPE APPROACH, CALIBRATED IF POSSIBLE AGAINST OBSERVED EVENTS (TO DETERMINE TRIGGERING RAINFALL)
- STATISTICALLY-BASED
 - BASED ON CLIMATIC, TOPOGRAPHIC, GEOLOGIC, LAND USE CHARACTERISTICS, AND LOCATION OF PAST EVENTS

Physically-based infinite slope model (e.g. SHALSTAB)


Statistically-based (weight from landslide inventories)

Mi: Score of criterion i

wi: Weight of criteria i

