Tiziano Munaro (11131) / David Von Leon (11120) Distributed Systems (2015)

TCP Chat - Technical Report

Server

The server [Server.java] takes as input the port to which it listens. It then creates a
socket at the given port. While performing a busy wait incoming requests are accepted
and the established connections are created. Finally, the new client is added to the list
of sockets to which all messages are broadcasted.

The connection itself takes the according socket and the list of all clients. After
establishing input and output streams, it makes use of busy waiting in order to check if
there is some incoming data. If there is, the content is read and forwarded to all clients.

Once an error occurs or the connection is interrupted, the server does the clean up an
frees the locked socket.

Client

The graphical user interface of the client [Client.java] consists of two parts: the
connection establishment and the receiving and writing of messages. The first one
allows the client to set the chat server and the port it is listening to. As long as no
connection is established, no messages can be sent or received and the corresponding
fields are not editable. Furthermore, the user can set his nickname, which is shown
beside every sent message, identifying her or him.

The observer classes provide an interface to the classes responsible for the user
interface and the connection with the server.

Once the user hits the ‘Connect’ button, the client tries to set up a session. If the socket
creation is successful, it too performs busy waiting to check whether new messages
have arrived. Additionally, the fields responsible for the connection establishment are
set to read only and those used to handle messages are enabled for editing. If new data
is available, the messages are passed to the GUI where they are appended to the main
text area. Once the connection is lost or interrupted, the used socket is freed for the
next client to bind. The same session is also used for sending messages, which are
then passed directly to the output stream.

List of requirements:

Your system should allow one to connect multiple remote clients to a single central
server.



Tiziano Munaro (11131) / David Von Leon (11120) Distributed Systems (2015)

Our server implementation allows an arbitrary number of clients, where all of
them are fully functional.

When a user enters a text message on his/her client, the message is delivered through
the server and displayed by any other client that is currently connected to the server,
including the original sending client.

Every new client is registered in a list with all the other currently connected
clients. Once one of them sends a message to the server, it gets broadcasted to
everyone of them. The single clients can be identified by their nickname.

Users can join and leave the chat at any time, provided the server is up.

Our implementation takes care of keeping the whole system in a stable state,
allowing the users to join and leave at any moment in time without interfering.
Furthermore, there is no connection between the clients and they are not aware
of each other. The server alone is in charge of the broadcasting of the messages,
adding and removing the clients from its list. This excludes that an error on one
client affects the functionality of the others.

Additionally, extensive testing has been performed on any aspect of the system to
provide a stable user experience. The results are fully backing up the previously
explained concepts. No serious issues have been encountered during the
implementation.

UDP alternative:

An implementation using the UDP protocol would certainly work, but for sure not as
good as the one using TCP. The first issue is encountered when trying to broadcasting
the messages to the other clients. Since UDP is connectionless, the server is not aware
of which clients are still online and which have already left. Sure, the client could send a
closing message, but this would not work in cases where the user crashes.
Furthermore, this would require message parsing and causes general overhead. UDP
also does not guarantee that the sent packages reach their destination, which is very
inconvenient for a chat application (not loss tolerant). Additionally, no error checking is
performed when using UDP. TCP may be slower, but when sending short text
messages a delay in the magnitude of milliseconds does not matter.

Therefore, even if UDP is lightweight and in many cases ideal for real time applications,
TCP is the right protocol for our chat.



