
 1

Lab Exercise – DNS and HTTP

Objective
DNS (Domain Name System) is the system and protocol that translates domain names to IP addresses

and more. HTTP (Hypertext Transfer Protocol) is used to transfer webpages.

Background: Network Setup
In a typical network, your computer contacts a local DNS nameserver to resolve domain names to IP ad-

dresses. The local nameserver may be another computer in your company network, a computer at your

ISP, or your wireless AP. It exchanges a series of messages with remote DNS nameservers all over the In-

ternet to perform the resolution. The setup is as shown in the figure below.

Figure 1: Typical network setup for DNS

It has an important implication: the trace we gather at our computer will see the exchanges between

our computer and the local nameserver, but not between the local nameserver and the remote name-

servers.

Task 1: Manual Name Resolution
Before we look at how your computer uses the DNS, we will see how a local nameserver resolves a DNS

name, i.e., we will interact with remote nameservers. To do this exercise, you will pretend to be the lo-

cal nameserver and issue requests to remote nameservers using the dig tool.

Pick a domain name to resolve, such as that of your web server. We will use www.uwa.edu.au. Find

the IP address of one of the root nameservers by searching the web. For example, the Wikipedia article

on root name servers includes the IP address of the root nameservers a through m. Any one of these

should do, as they hold replicated information. You need this information to begin the name resolution

process, and nameservers are provided with it as part of their configuration.

Use dig to issue a request to a root nameserver to perform the first step of the resolution. You are as-

suming that you have no cached information that will let you begin a resolution below the root. The

format of a dig command is “dig @aa.bb.cc.dd domainname”. It instructs dig to send a re-

quest to a nameserver at a given IP address (or name) for the given domain name. In the figure below,

we used dig to send a request to the “a” root nameserver whose IP address is 198.41.0.4 to resolve

our example web server, i.e., “dig @198.41.0.4 www.uwa.edu.au”. The reply from the root

 2

does not provide the full name resolution, but it does tell us about nameservers closer to having the in-

formation for you to contact. In this case, it is nameservers who know about the “.au” domain. Multiple

nameservers are given as alternative choices, and the reply helpfully includes their IP addresses; we can

see IPv6 addresses as well as IPv4 addresses.

Continue the resolution process with dig until you complete the resolution. When you have alternatives

to choose, prefer IPv4 nameservers and select the first one in alphabetical order. If this nameserver has

multiple IP addresses then select the numerically smallest IP address. In the figure, the nameserver at IP

address 58.65.254.73 that is authoritative for “au.” is the remote nameserver to contact next. You can

complete the resolution without these tie-breaking rules and will likely obtain the same result since the

DNS information is replicated. The rules are so that everyone doing the lab follows the same path. Keep

these dig commands handy, as you will repeat them in the next step when you capture a trace.

 3

Draw a figure that shows the sequence of remote nameservers that you contacted and the domain for

which they are responsible. Note that future name resolutions are likely to be a much shorter sequence

because they can use cached information. For example, if you looked up a domain name in “.edu” then

when you look up a different domain name in “.edu” you already know the name of the “.edu”

nameserver. Thus you can start there, or even closer to the final nameserver depending on what you

have cached; you do not need to start again at the root nameserver.

Task 2: Capture an HTTP Trace
Capture a trace of your browser making HTTP requests as follows; alternatively, you may use a supplied

trace. Now that we seen how a GET works, we will observe your browser as it makes HTTP requests.

Browser behavior can be quite complex, using more HTTP features than the basic exchange, so we will

set up a simple scenario. We are assuming that your browser will use HTTP in this simple scenario rather

than newer Web protocols such as SPDY, and if this is not the case you will need to disable SPDY.

1. Use your browser to find two URLs with which to experiment, both of which are HTTP (not

HTTPS) URLs with no special port. The first URL should be that of a small to medium-sized image,

whether .jpg, .gif, or .png. We want some static content without embedded resources. You can

often find such a URL by right-clicking on unlinked images in web pages to tell your browser to

open the URL of the image directly. The second URL should be the home page of some major

web site that you would like to study. It will be complex by comparison. Visit both URLs to check

that they work, then keep them handy outside of the browser so you can cut-and-paste them.

2. Prepare your browser by reducing HTTP activity and clearing the cache. Apart from one fresh

tab that you will use, close all other tabs, windows (and other browsers!) to minimize HTTP traf-

fic. When you clear your browser cache, do not delete your cookies if you have a choice.

3. Launch Wireshark and start a capture with a filter of “tcp port 80”. We use this filter be-

cause there is no shorthand for HTTP, but HTTP is normally carried on TCP port 80. Uncheck

“capture packets in promiscuous mode”. This mode is useful to overhear packets sent to/from

other computers on broadcast networks. We only want to record packets sent to/from your

computer.

4. Fetch the following sequence of URLs, after you wait for a moment to check that there is no

HTTP traffic. If there is HTTP traffic then you need to find and close the application that is caus-

ing it. Otherwise your trace will have too much HTTP traffic for you to understand. You will paste

each URL into the browser URL bar and press Enter to fetch it. Do not type the URL, as this may

cause the browser to generate additional HTTP requests as it tries to auto-complete your typing.

a. Fetch the first static image URL by pasting the URL into the browser bar and pressing

“Enter” or whatever is required to run your browser.

b. Wait 10 seconds, and re-fetch the static image URL. Do this in the same manner, and

without using the “Reload” button of your browser, lest it trigger other behavior.

c. Wait another 10 seconds, and fetch the second home page URL.

 4

Figure 2: Setting up the capture options

5. Stop the capture after the fetches are complete. You should have a window full of trace in which

the protocol of some packets is listed as HTTP – if you do not have any HTTP packets there is a

problem with the setup such as your browser using SPDY instead of HTTP to fetch web pages.

 5

Figure 3: Trace of HTTP traffic showing the details of the HTTP header

Task 3: Inspect the Trace
To focus on HTTP traffic, enter and apply a filter expression of “http”. This filter will show HTTP re-

quests and responses, but not the individual packets that are involved. Recall that an HTTP response car-

rying content will normally be spread across multiple packets. When the last packet in the response ar-

rives, Wireshark assembles the complete response and tags the packet with protocol HTTP. The earlier

packets are simply TCP segments carrying data; the last packet tagged HTTP includes a list of all the ear-

lier packets used to make the response. A similar process occurs for the request, but in this case it is

common for a request to fit in a single packet. With the filter expression of “http” we will hide the in-

 6

termediate TCP packets and see only the HTTP requests and responses. With this filter, your Wireshark

display should be similar to the figure showing our example.

Select the first GET in the trace, and expand its HTTP block. This will let us inspect the details of an HTTP

request. Observe that the HTTP header follows the TCP and IP headers, as HTTP is an application proto-

col that is transported using TCP/IP. To view it, select the packet, find the HTTP block in the middle pan-

el, and expand it (by using the “+” expander or icon). This block is expanded in our figure.

Explore the headers that are sent along with the request. First, you will see the GET method at the start

of the request, including details such as the path. Then you will see a series of headers in the form of

tagged parameters. There may be many headers, and the choice of headers and their values vary from

browser to browser. See if you have any of these common headers:

 Host. A mandatory header, it identifies the name (and port) of the server.

 User-Agent. The kind of browser and its capabilities.

 Accept, Accept-Encoding, Accept-Charset, Accept-Language. Descriptions of the formats that will

be accepted in the response, e.g., text/html, including its encoding, e.g., gzip, and language.

 Cookie. The name and value of cookies the browser holds for the website.

 Cache-Control. Information about how the response can be cached.

The request information is sent in a simple text and line-based format. If you look in the bottom panel

you can read much of the request directly from the packet itself!

Select the response that corresponds to the first GET in the trace, and expand its HTTP block. The Info for

this packet will indicate “200 OK” in the case of a normal, successful transfer. You will see that the re-

sponse is similar to the request, with a series of headers that follow the “200 OK” status code. However,

different headers will be used, and the headers will be followed by the requested content. See if you

have any of these common headers:

 Server. The kind of server and its capabilities.

 Date, Last-Modified. The time of the response and the time the content last changed.

 Cache-Control, Expires, Etag. Information about how the response can be cached.

You are likely to see a variety of other headers too, depending on your browser, server, and choice of

content that you requested.

Answer the following questions:

1. What is the format of a header line? Give a simple description that fits the headers you see.

2. What headers are used to indicate the kind and length of content that is returned in a response?

Task 4: Content Caching
The second fetch in the trace should be a re-fetch of the first URL. This fetch presents an opportunity for

us to look at caching in action, since it is highly likely that the image or document has not changed and

therefore does not need to be downloaded again. HTTP caching mechanisms should identify this oppor-

tunity. We will now see how they work.

 7

Select the GET that is a re-fetch of the first GET, and expand its HTTP block. Likely, this will be the second

GET in the trace. However, look carefully because your browser may issue other HTTP requests for its

own reasons. For example, you might see a GET for /favicon.ico in the trace. This is the browser request-

ing the icon for the site to use as part of the browser display. Similarly, if you typed in the URL bar your

browser may have issued GETs as part of its auto-completion routine. We are not interested in this

background browser activity at the moment.

Now find the header that will let the server work out whether it needs to send fresh content. We will ask

you about this header shortly. The server will need to send fresh content only if the content has

changed since the browser last downloaded it. To work this out, the browser includes a timestamp tak-

en from the previous download for the content that it has cached. This header was not present on the

first GET since we cleared the browser cache so the browser had no previous download of the content

that it could use. In most other respects, this request will be the same as the first time request.

Finally, select the response to the re-fetch, and expand its HTTP block. Assuming that caching worked as

expected, this response will not contain the content. Instead, the status code of the response will be

“304 Not Modified”. This tells the browser that the content is unchanged from its previous copy, and

the cached content can then be displayed.

Answer the following questions:

1. What is the name of the header the browser sends to let the server work out whether to send

fresh content?

2. Where exactly does the timestamp value carried by the header come from?

Task 5: Complex Pages
Now let’s examine the third fetch at the end of the trace. This fetch was for a more complex web page

that will likely have embedded resources. So the browser will download the initial HTML plus all of the

embedded resources needed to render the page, plus other resources that are requested during the ex-

ecution of page scripts. As we’ll see, a single page can involve many GETs!

To summarize the GETs for the third page, bring up a HTTP Load Distribution panel. You will find this

panel under “Statistics” and “HTTP”. You can filter for the packets that are part of the third fetch by re-

moving the packets from the earlier part of the trace by either time or number. For example, use

“frame.number>27” or “frame.time_relative>24” for our trace.

Looking at this panel will tell you how many requests were made to which servers. Chances are that

your fetch will request content from other servers you might not have suspected to build the page.

These other servers may include third parties such as content distribution networks, ad networks, and

analytics networks. Our panel is shown below – the page fetch involved 95 requests to 4 different serv-

ers!

 8

Figure 4: HTTP Load Distribution panel

For a different kind of summary of the GETs, bring up a HTTP Packet Counter panel. You will also find this

panel under “Statistics” and “HTTP”, and you should filter for the packets that are part of the third fetch

as before. This panel will tell you the kinds of request and responses. Our panel is shown in the figure

below. You can see that it consists entirely of GET requests that are matched by 200 OK responses.

However, there are a variety of other response codes that you might observe in your trace, such as

when the resource is already cached.

Figure 5: HTTP Packet Counter panel

 9

You might be curious to know what content is being downloaded by all these requests. As well as seeing

the URLs in the Info column, you can get a summary of the URLs in a HTTP Request panel under “Statis-

tics” and “HTTP”. Each of the individual requests and responses has the same form we saw in an earlier

step. Collectively, they are performed in the process of fetching a complete page with a given URL.

For a more detailed look at the overall page load process, use a site such as Google’s PageSpeed or

webpagetest.org. These sites will test a URL of your choice and generate a report of the page load

activity, telling what requests were fetched at what times and giving tips for decreasing the overall page

load time. We have shown the beginning of the “waterfall” diagram for the page load corresponding to

our trace in the figure below. After the initial HTML resource is fetched there are many subsequent

quick fetches for embedded resources such as JavaScript scripts, CSS stylesheets, images, and more.

Figure 6: Start of waterfall graph for www.washington.edu (from pageloadtest.org)

Explore Your Network
We encourage you to explore HTTP on your own once you have finished this lab. Some suggestions:

 Look at how an HTTP POST works. We focused on the GET method above. POST is used to up-

load information to the server. You can study a POST by finding a simple web page with a form

and tracing the form submission. However, do not study login forms as you want to observe an

HTTP POST and not an encrypted HTTPS POST that is more typical when security is needed.

http://www.washington.edu/

 10

 Study how web pages lead to a pattern of HTTP requests. Many popular web sites have relative-

ly complex pages that require many HTTP requests to build. Moreover, these pages may contin-

ue to issue “asynchronous” HTTP requests once they appear to have loaded, to load interactive

displays or prepare for the next page, etc. You will see this activity when you find HTTP requests

that continue after a page is loaded.

 Look at how HTTP GETs map to TCP connections once you have also done the TCP lab. With

HTTP 1.1, the browser can make one TCP connection to a server and send multiple requests. Of-

ten after a single request the TCP connection will be kept open by the browser for a short while

in case another request is coming. The number of concurrent connections and how long they

are kept open depends on the browser, so you will discover how your browser behaves.

 Look at video streaming HTTP traffic. We have looked at web HTTP traffic, but other applica-

tions make HTTP requests too. It is common for streaming video clients embedded in browsers

like Netflix to download content using a HTTP fetches of many small “chunks” of video. If you

look at other applications, you may find that many of them use HTTP to shift about content,

though often on a port different than port 80.

