
Distributed Systems Spring-Summer 2015

Assignment 1 Simon Razniewski

Threads in Java

Instructions: You are allowed to work alone or in teams of two students.
Submit a single file DiningPhilosophers.java which contains (i) an explanation of
your solution to the problem as comment, (ii) the Java code.

Problem Statement: This programming assignment gives you the opportunity to
do a small concurrent object-oriented programming using threads. The assignment
is to be done in Java.
Dining Philosophers A common problem in concurrent programming is coordi-
nating access to a shared resource by enforcing a synchronization condition be-
tween multiple concurrent processes. A classic example is the Dining Philoso-
phers problem, which consists of 5 philosophers seated at a round table thinking
and eating concurrently. For this version of the Dining Philosophers problem, they
are eating using a pair of chopsticks. Each philosopher has a left chopstick and
a right chopstick, so there are 5 chopsticks in total. In order to eat, a philoso-
pher must obtain both left and right chopsticks exclusively. The philosopher must
pick up one, then the other chopstick. If a chopstick is not available a philosopher
must wait for it to be released by his/her neighbor before being allowed to eat. A
philosopher is allowed to eat for no more than 1 second before relinquishing both
chopsticks to think again, so as not to starve the other philosophers. After a ran-
dom number of milliseconds of thinking, a philosopher may try to eat again but
has to re-acquire both chopsticks. Below is a fragment of a Philosopher class that
inherits the java.lang.Thread class and shows the order in which to think, acquire
chopsticks, eat, and release chopsticks:

public class Philosopher extends Thread{
private String name;
private Chopstick left, right;

// each Philosopher is assigned an integer id and two chopsticks
public Philosopher (int id, Chopstick c1, Chopstick c2) {

name = "Philosopher-" + id;
left = c1; right = c2;

}

// the run method is invoked by calling the start()method on
// an instance of the Philosopher class, e.g., phil.start()
public void run() {

while (true) { // loop forever
System.out.println(name + " thinking");



// TODO: think for random number of milliseconds <=1 sec
// TODO: acquire both chopsticks
System.out.println (name + "dining");
// TODO: eat for random number of milliseconds <= 1sec
// TODO: release both chopsticks

}
}

}

In addition to the Philosopher class, you will need a Chopstick class for enforcing
synchronized access to each chopstick. A philosopher acquires a chopstick when
it is available, or waits. At no time may two philosophers hold the same chopstick.
When finished eating, a philosopher releases both chopsticks.
Your main program must create 5 Chopstick objects and 5 Philosopher objects and
assign to each Philosopher the correct pair of Chopsticks (modulo 5), one shared
with the Philosopher on the left and one with the Philosopher on the right. Create
each Philosopher thread and start it running in your main procedure.
Run the program for at least 1 minute verifying that each Philosopher gets to eat
several times. On termination, the program must report statistics on a) how many
times each philosopher got to eat and b) how long (in milliseconds) each philoso-
pher spent eating and thinking. Use these statistics to verify that neither starvation
nor deadlock occurs for any Philosopher.

Update: Having starvation or deadlock occur is unlikely in a run of one minute.
So please make sure that your implementation is deadlock and starvation free by
design, not only by experience. Explain in your comment which strategy you use
to avoid deadlocks/livelocks

Implementation Notes: 1. In Java, a thread sleeps by calling the Thread.sleep()
method passing an integer value representing the number of milliseconds to sleep.
The easiest thing to do is write a randomSleep() function as follows, which also
handles an exception that could be thrown by the Thread.sleep() function.
Math.random() returns a double value between 0.0 and 1.0, so it must be multi-
plied by 1000 and converted to an integer value.

void randomSleep () {
int ms = (int)(1000 * Math.random());
try { Thread.sleep(ms); }
catch (InterruptedException e) { /* ignore it */}

}

Submission: Friday, 6th of March 2015, 10:00 am via Moodle.


