
Wireshark I 1

Distributed Systems 2016/2017

Lab Simon Razniewski/Florian Hofer

8. Wireshark I: Protocol Stack and Ethernet

Objective
To learn how protocols and layering are represented in packets, and to explore the details of Ethernet

frames.

Requirements
Wireshark: This lab uses the Wireshark software tool to capture and examine a network traffic. You can

download it from www.wireshark.org if it is not already installed on your computer.

Step 1: Capture a Trace
We want this trace to look at the protocol structure of packets. A simple Web fetch of a URL from a

server of your choice to your computer, which is the client, will serve as traffic.

1. Close unnecessary browser tabs and windows. By minimizing browser activity you will stop your

computer from fetching unnecessary web content, and avoid incidental traffic in the trace.

2. Launch Wireshark and start a capture with a filter of “tcp port 80” and check “enable net-

work name resolution”. This filter will record only standard web traffic and not other kinds of

packets that your computer may send. The checking will translate the addresses of the comput-

ers sending and receiving packets into names, which should help you to recognize whether the

packets are going to or from your computer.

3. When the capture is started, open a simple webpage of your choice in your browser.

4. After the fetch is successful, return to Wireshark and use the menus or buttons to stop the trace.

If you have succeeded, the upper Wireshark window will show multiple packets, and most likely

it will be full. How many packets are captured will depend on the size of the web page, but there

should be at least 8 packets in the trace, and typically 20-100. Congratulations, you have cap-

tured a trace!

Step 2: Inspect the Trace
Wireshark will let us select a packet (from the top panel) and view its protocol layers, in terms of both

header fields (in the middle panel) and the bytes that make up the packet (in the bottom panel). Note

that we are using “packet” as a general term here. Strictly speaking, a unit of information at the link lay-

er is called a frame. At the network layer it is called a packet, at the transport layer a segment, and at

the application layer a message. Wireshark is gathering frames and presenting us with the higher-layer

packet, segment, and message structures it can recognize that are carried within the frames. We will of-

ten use “packet” for convenience, as each frame contains one packet and it is often the packet or high-

er-layer details that are of interest.

http://www.wireshark.org/

Wireshark I 2

Select a packet for which the Protocol column is “HTTP” and the Info column says it is a GET. It is the

packet that carries the web (HTTP) request sent from your computer to the server. (You can click the

column headings to sort by that value, though it should not be difficult to find an HTTP packet by inspec-

tion.) Let’s have a closer look to see how the packet structure reflects the protocols that are in use.

Since we are fetching a web page, we know that the protocol layers being used are as shown below.

That is, HTTP is the application layer web protocol used to fetch URLs. Like many Internet applications, it

runs on top of the TCP/IP transport and network layer protocols. The link and physical layer protocols

depend on your network, but are typically combined in the form of Ethernet (shown) if your computer is

wired, or 802.11 (not shown) if your computer is wireless.

Figure 1: Protocol stack for a web fetch

With the HTTP GET packet selected, look closely to see the similarities and differences between it and our

protocol stack as described next. The protocol blocks are listed in the middle panel. You can expand each

block (by clicking on the “+” expander or icon) to see its details.

 The first Wireshark block is “Frame”. This is not a protocol, it is a record that describes overall

information about the packet, including when it was captured and how many bits long it is.

 The second block is “Ethernet”. This matches our diagram! Note that you may have taken a

trace on a computer using 802.11 yet still see an Ethernet block instead of an 802.11 block.

Why? By default, Wireshark transforms 802.11 header into a pseudo-Ethernet header.

 Then come IP, TCP, and HTTP, which are just as we wanted. Note that the order is from the bot-

tom of the protocol stack upwards. This is because as packets are passed down the stack, the

header information of the lower layer protocol is added to the front of the information from the

higher layer protocol, as in Fig. 1-15 of your text. That is, the lower layer protocols come first in

the packet “on the wire”.

Now find another HTTP packet, the response from the server to your computer, and look at the structure

of this packet for the differences compared to the HTTP GET packet. This packet should have “200 OK” in

the Info field, denoting a successful fetch. In our trace, there should be two extra blocks in the detail

panel:

 The first extra block says “[11 reassembled TCP segments …]”. Details in your capture will vary,

but this block is describing more than the packet itself. Most likely, the web response was sent

across the network as a series of packets that were put together after they arrived at the com-

puter. The packet labeled HTTP is the last packet in the web response, and the block lists pack-

ets that are joined together to obtain the complete web response. Each of these packets is

Wireshark I 3

shown as having protocol TCP even though the packets carry part of an HTTP response. Only the

final packet is shown as having protocol HTTP when the complete HTTP message may be under-

stood, and it lists the packets that are joined together to make the HTTP response.

 The second extra block says “Line-based text data …”. Details in your capture will vary, but this

block is describing the contents of the web page that was fetched. In our case it is of type

text/html, though it could easily have been text/xml, image/jpeg, or many other types. As with

the Frame record, this is not a true protocol. Instead, it is a description of packet contents that

Wireshark is producing to help us understand the network traffic.

Step 3: Packet Structure
To show your understanding of packet structure, draw a figure of an HTTP GET packet that shows the

position and size in bytes of the HTTP, TCP, IP and Ethernet protocol headers. Your figure can simply

show the overall packet as a long, thin rectangle.

To work out sizes, observe that when you click on a protocol block in the middle panel (the block itself,

not the “+” expander) then Wireshark will highlight the bytes it corresponds to in the packet in the low-

er panel and display the length at the bottom of the window. For instance, clicking on the IP version 4

header of a packet in our trace shows us that the length is 20 bytes. You may also use the overall packet

size shown in the Length column or Frame detail block.

Step 4: Protocol Overhead
Estimate the download protocol overhead, or percentage of the download bytes taken up by protocol

overhead. To do this, consider HTTP data (headers and message) to be useful data for the network to

carry, and lower layer headers (TCP, IP, and Ethernet) to be the overhead. We would like this overhead

to be small, so that most bits are used to carry content that applications care about. To work this out,

first look at only the packets in the download direction for a single web fetch. You might sort on the Des-

tination column to find them. The packets should start with a short TCP packet described as a SYN ACK,

which is the beginning of a connection. They will be followed by mostly longer packets in the middle (of

roughly 1 to 1.5KB), of which the last one is an HTTP packet. This is the main portion of the download.

And they will likely end with a short TCP packet that is part of ending the connection. For each packet,

you can inspect how much overhead it has in the form of Ethernet / IP / TCP headers, and how much

useful HTTP data it carries in the TCP payload. You may also look at the HTTP packet in Wireshark to

learn how much data is in the TCP payloads over all download packets.

Step 5: Demultiplexing Keys
When an Ethernet frame arrives at a computer, the Ethernet layer must hand the packet that it contains

to the next higher layer to be processed. The act of finding the right higher layer to process received

packets is called demultiplexing. We know that in our case the higher layer is IP. But how does the

Ethernet protocol know this? After all, the higher-layer could have been another protocol entirely (such

as ARP). We have the same issue at the IP layer – IP must be able to determine that the contents of IP

message is a TCP packet so that it can hand it to the TCP protocol to process. The answer is that proto-

cols use information in their header known as a “demultiplexing key” to determine the higher layer.

Look at the Ethernet and IP headers of a download packet in detail to answer the following questions:

Wireshark I 4

1. Which Ethernet header field is the demultiplexing key that tells it the next higher layer is IP?

What value is used in this field to indicate “IP”?

2. Which IP header field is the demultiplexing key that tells it the next higher layer is TCP? What

value is used in this field to indicate “TCP”?

Step 6: Scope of Ethernet Addresses
Each Ethernet frame carries a source and destination address. One of these addresses is that of your

computer. It is the source for frames that are sent, and the destination for frames that are received. But

what is the other address? Assuming you pinged a remote Internet server, it cannot be the Ethernet ad-

dress of the remote server because an Ethernet frame is only addressed to go within one LAN. Instead, it

will be the Ethernet address of the router or default gateway, such as your AP in the case of 802.11. This

is the device that connects your LAN to the rest of the Internet. In contrast, the IP addresses in the IP

block of each packet do indicate the overall source and destination endpoints. They are your computer

and the remote server.

Draw a figure that shows the relative positions of your computer, the router, and the remote server. La-

bel your computer and the router with their Ethernet addresses. Label your computer and the remote

server with their IP addresses. Show where the Ethernet and the rest of the Internet fit on the drawing.

Explore on your own
We encourage you to explore protocols and layering once you have completed this lab. Some ideas:

 Look at a short TCP packet that carries no higher-layer data. To what entity is this packet des-

tined? After all, if it carries no higher-layer data then it does not seem very useful to a higher

layer protocol such as HTTP!

 In a classic layered model, one message from a higher layer has a header appended by the lower

layer and becomes one new message. But this is not always the case. Above, we saw a trace in

which the web response (one HTTP message comprised of an HTTP header and an HTTP pay-

load) was converted into multiple lower layer messages (being multiple TCP packets). Imagine

that you have drawn the packet structure (as in step 2) for the first and last TCP packet carrying

the web response. How will the drawings differ?

 In the classic layered model described above, lower layers append headers to the messages

passed down from higher layers. How will this model change if a lower layer adds encryp-

tion/compression?

