
PTS chapter 3 - Final Lecture
Notes



3 Special Random Variables

-3.1Bernoulli and Binomial
-

A Bernoulli experiment has any 2
outcomes

H = {
^ it success

0 if failure

Puf of E
-

-

PIK = r ] = P , for some OE per

PI IE - O ] = @ - p)



Let It be a Bernoulli variable with probability p . Then

EEE ] = 1 -

p
t O - Ce -p) =p

Note : H2 -_ He

E[ to] = EEK ) =p

Var GE) = EEE) - EEIEIZ %-) )
= p

- p
'
- per -p)

§ o
'k

a

maximal for p =L Graph of per
- p )

,

maximal for p={



Let us repeat a Bernoulli experiment
with RU IE .

Suppose ka ) . . . ,
Ha ,

. . . are i. i. d . Bern ( p) RUS
.

Then

ya
:-c II ku counts the number of successes

Possible values of Yu
: O

,
l
,

-
.

- -

,
h

PE Ya = i ] = (7) pic , -p,
" - i

Boxes to record

LA ET LA LA LA ET ④
success

r z
3

-

. if 8 3 successes

• # ways to get 3 successes
? ( § )

• Probability of such an outcome : p
'
( r - p}

-3



Let us repeat a Bernoulli experiment
with RU k u times

Suppose He , . . . ,
Ha are i. i. d . Bern ( p) RUS

.

Then

ya :=÷! Ka counts the number of successes

The possible values of Yu
are 0

,
l
, 2 , - -

r

,
u

.

P [ Yu - i ] = (7) pie - p,
" - i

Boxes to record

LILA LA LA LA 677.7078 success

3 7 ] successes
I 2

• # ways to get 3 successes ? ( Sf)

• Probability of such an outcome : pH - p}
-3



Note :

cptq )
"
=

( Y ) pi qu
- i

according to the binomial
theorem .

Suppose of =
l - p .

Then

u - i

r -- ( Pt K
- pl )

"

= ¥
.

(7) pice - p ) .

This shows that

pi :-. (7) pile
- pi

- i

,

oeieu
,

is a probability mass function .



We say that Yu is distributed according to the

binomial distribution with parameters u and p , written

Yu n Bca , p) .

We calculate mean
and variance :

E[Yu ] = E E ÷
.

Hi ] -
- ¥
.

EL ki ] = II p = up

Varcyu ) -- Var ( iz ki ) = Ii Vor CHE)
= Is
,

per - p) = up ca
- p )



Example : A satellite system has 4 components and functions

if at least 2 are working .

Each component is independently working with probability p = 0.6 .

What is the probability that the system functions
?

P [ System functions ]

= A - P [ System doesn't function]

= 1 - Po

Po =P [ all components fail ]
t P [ exactly 3 components fail]

= P [ no component functions ]
t PF exactly A coup . functions]

= (f) pole - pi
"
t (4) pale - pp

= A . 0.4
"
t 4 . D- G - O

-

43
= 0

. 1792



3.3 Uniform Random Variables

A continuous RV It is uniformly distributed if there

is an interval Tac B ] so that

• It takes only values in Ex , B]

• all values are equally probable .

This means
,
It has the density f

where

=A

ton -- 1¥ '
" '' c- P

e
- g

otherwise .

B - a-1%1/1,
F-

We write H n Uta , BJ .

a p

whet about mean and variance ?



We first determine mean and variance for the simple

case that I n UEon ]. Then

EEE ] = fix - r de = [ Ez ] ! = I

ELIE
' ] =/! x ? dok =[ Jo = I

Hence,

Var CH ) = E- [ H2 ) - EEA]2

=3 - ⇐It. -3-4=-4



Suppose now that ynUEaB] .

Then It :=
¥ is

'U -6,13 - distributed and

p - a

y = @ - a) It +2 .

Therefore
,

EEG ]= (B
- x ) EEK] ta = P ta
at B

=

-

2

Varley ) -- CB - a)
' Varese, = 12



Mean of Uca , B) : Brute - Force Calculation

This is a calculation of mean and variances

following direct the definition . Compare this to our

approach of Ci) solving a simple variant
of the

problem and
Cii ) reducing complex cases to

the simple one .

or



Variance of U Earp] : Brut- Force Calculation
-

s



Exponential Functions

Three concepts : we consider functions with the following properties :

1) f-Cx) = at , × c- ④ ( i.e.
,
× like Fe

,
Ig , . . .)

,

for some a > 0

Exponentiation
an

,

are
,
am =Yfa, a°=1

1 = a- 3. as = at ⇒ a-
3 =L,
I

- E =
-

2) fcxty ) = fcxl . fcy) , x.YER a fat

Addition - multiplication homomorphism

3) flex ) = a f- Cx ) , X EIR and fool =L ,
for some ato .

Growth proportional to value
like

(edt )
'

= a e

"



We will see that these three concepts are

actually equivalent for differentiable functions .

If a differentiable function f has one of

these three properties , then it also
has the other two .

We show that

r) implies 2)

2) implies 3)

3) implies 2)

2) implies r)



We note that exponentiation can also be defined

for real numbers as exponents. This , however,
is only

conceptually interesting , it does not give us a practical

way to compute such powers .
That will come Later.

If × ECR is a real number , then we can approximate
it by rational numbers .

That is
,
there is a sequence ru

such that
bin ru = x or ru → X

.

u → is
1

Then we define
ax : = lour a

"

u → u

For instance
, this gives

5
'T
= bin ( 53

,

5%
,
57¥

,
. .

. )

I



Implication 1) ⇒ 2)

If f : IR → CR is differentiable and for some a ECR

× Exponentiationf-Cx) = a , X C- Ok

then

f-city ) = fcxl . fcy)
, x. y E R

Addition - multiplication

homomorphism

Proof : By the properties of exponentiation , we
have

1-city , = feel - fcy) for all x.y E Q .

If f is differentiable , it is also continuous and the

second equation holds also for x. ye IR because addition

and multiplication are continuous .



Implication 2) ⇒ 3)

If f : IR → CR is differentiable and

f-city ) = fcxl . fcy)
, ay ER

then there is a constant a c- IR such that

f-
'
Cx ) = a f- Cx ) , X EIR and fool =n .

Proof .. First
,
we note that too ) = r

.

This is because

f- co) = fCoto ) = fco ) - fco )

⇒ i = foo)



Next
,
we see what we can conclude about f

'
:

f-
'
ex , = bin fifth ) - fax,

h -70 h

= bin fcx ) - tch ) - fax, . y

h -70 h

= bin ¥1
. fcx)

h -70 h

= fin . tex,

= f'co ) . fcx)

So
, f'co, is the x we were looking for .



Implication 3) ⇒ 2)

If f : IR → CR is differentiable and

there is a constant a c- IR such that

f-
'
Cx ) = a f- Cx ) , X EIR and fool = 1

then

f-city ) = fcxl . fcy)
, x. y E R

Proof. This argument is a bit lengthy. We first

check that it is enough to prove the
claim for a = n

.

From there we arrive at the power series of the

exponential function and obtain the homomorphism

equation .



First : H 's enough to consider 2=1
.

Suppose that glue) = a gcxl and geo)
-

- n
.

We normalize g as f , defined as fox) : = g CIx) .

We get back g from f because gcx7= g CI . a.x) = flax ) .

Then flex , §
S 'LL x ) . I = Kg (IX) . If = g (Ix) = fee)

.9
chain rule proportional growth

That is
,
f satisfies f '=f

.

We also have fool = g
( Io ) = g Col =L .

Suppose we can show that such an f also satisfies

f-City ) = fctl . fcy) .

Then getty ) = fcacxty) ) = fcaxtayl-fcaxl-fca-p-g.CH -gey)
.

So
,
it suffices to consider 2=1 .



Second : what does f look like ?

It cannot be a polynomial like feel = ceo + and f - -
- faux

"

.

This would yield f
'""

= o
.

t
'" "

is the cute-th derivative

Let us assume that f has a power series , i - e .

,
f is

an infinitely long polynomial fuel = a. toe, x ht
. . - faux

"
t - - -

.

What does that tell us about the coefficients au
?

4 lets

f- Cx) = dot a, Xt t a2×2 t as x3 f- .
.
- t an X t auf,X

= = =

= =
Utm

f-
'

ex ) = O t an Xo t Zazx
"

t See# t - at U
- auk t @tr) anti

"

The series f
'
and f are the same iff they have the same

coefficients : a
,
= Ceo , Zaz = ay , . . .

,
Cut 1) anti = an .

That is
, they satisfy the recurrence

1

auth =

Tt au
with ao = l

.



The occurrence

an

auth = - with ao = l
Utd

leads to the values

Ao = 1, an = In , Az = ¥2 , as = ¥2.3
and generally

an = I
.

u !

The shape of f is therefore

tin -
- E. ÷. " -

- E
.

This function is also known as the exponential function

and it is often devoted as eep..

We see
,
its form derives from the two conditions

f
'
= f and f co ) = 1.



Third : The exponential function satisfies fatty) -- fan . fcy)
.

We start with the night - hand side :

f- Cx) . fcy) = If it! o Iyo
'

Reorganize the sum,
combine factors

whose exponents
add up to U ,

= E. II
.

,
toreaouu .

Multiply the inner
sum by n !

= IT
.

I⇒I÷*, :X " Y " " n -- a
.

.

= ⇐out, %⇒ (Uk) x " y
" - k

Binomial formula !

= Iota.

City
"

= Io Ent
"

-

- fusty )



Implication 2) ⇒ 1)

It

f-city ) = fcxl . fcy)
, ay ER

then for some a ECR

f- cx) = at, X E

Proof , we have already shown that from our

assumption it follows
that

• f co) = 1 .

We conclude from 1 = fool = fcxtc -all -- fcx) - fc -x ) that

• f C- x ) = -1
far,

-



Moreover
,

• f- ( m - x) = f- (Xf - - - tx ) = feel . - -
-

o fca = foam
TH TH

u

From fca) = fl Et Et .
.
- TE ) = f ( Eu )
-

we conclude u times

• HE) -
- if = fix,

""

Hence
,
for every

rational www.so In we leave

• f- ( Fa ) = f- ( m - E ) = FCI )
"

= ft
"

4)
"

= forth



So far we have seen that fcxty> = fax , - fay)

implies
fee , = f- cost

,
X E Q

For the special case of f- = exp , that- is , f
'
=f
,

we have O

y

fer ) = exp (r ) = -2 Tu
.

h =D

We often denote the number expel) simply
as e

.

Then we have

ex = exp Lik = expcx) = II ,
XEQ

Since exp is differentiable , (this was always our assumption)

it is continuous on Ok
,
this equality also holds for XECR .



If g satisfies g
'

ex , = age) ,

then gcx7= eepcax) ,

as seen before , that is,
P 2

"

x
"

gcx ,
= -2 -u !

U = O
'

w

?
ha.ve exp Cx) s O for X 70 and eepc - x ) =¥p¢, ,

hence expcx ) > o
holds also for x co .

That is , exp
'

= eepcx) > o for all XELR .

Thus
, exp is strictly monotonic aced has

an inverse

function that we
call log .



As the inverse of exp , the function log inherits the property

log ex .

y )
= log et) t log Cy)

.

The known laws for logarithms and exponents

can all be derived from the development shown

so far.



3 Exponential Random Variables

let It be a random variable that stands for
the

time we have to wait for
a radioactive atom

to

decay (or for some other
similar event)

.

We assume that the waiting time
does not depend

on the time
we leave already waited .

To some ee seat

this holds also when waiting for

• the next customer

. the next email

• the next taxi .



Let It be the waiting time . Our assumption

that the probability distribution for the time

after s, if the event
has not occurred, is the same

as the original distribution can
be expressed as

C) PETE > Stt l H > s ] =PLIE > E]

Let Fct) : = PI HEE ] and GCE) : = PEH > t ] = 1 - F Ce ) .

Then

him GCE) = o
* as

because GCE) = 1 - FCE ) and
live Fct ) = l

.

E -7 D



The definition of conditional probabilities tells us that

¥1 is equivalent to

PIK > Stt ] PIE > STE , to > s ]
-

=-

PEE > S] PEE > S]

= PEH > Stt 1 If > s ] = PETE >t )

That is
,

GESTE ) = PEK > STE ]

= PETE >s] - PEK >t] = Gcs ) - GE)

This yields

GCE ) = at where a = Gcr)

and act since Lim Gct)=o
.C-→a



Since act , we have log a co .

Let D : = - log a .

Then at = elles alt = e-At
.

Hence , GH ) = PI
IE SET = e-

DE

.

⇒ Fct ) = PI HE t ) = A - PEH >t ] = A - Gay

= A - e-
At

is the cdf ( = distribution function) of E

⇒ f- CE ) = ¥ A - e-
At

= de
- Tk

is the pdf of K .

We say It is exponentially distributed with parameter T , written

It n Expo)



What does a stand for ? The dimension of t is
time .

⇒ The dimension of T is
time
,

i. e.
,
A is a frequency or rate .

( using integration

In the labs we have calculated : by parts)

¥ is the average

• E [ I] = § t . e- RE It = tf waiting time

17 is the average
number of events

per time unit i. e. ,

E [ to] = § E. e- At It = £2 the rate of events

•
varut.EE#23-EEIET-- Ia -⇐Y - Iaa

Hence
, µ =L ,

8 = I



Multiple Mailboxes

we assume that the arrival of E - mails can be modeled

by an exponential distribution . That is , there is a rate a so

such that the probability to wait at least for a truce t

for the next mail is

-DE
= Gtf)

e

Suppose there are u people with an E- mail mailbox and

the rate at which
mail arrives at maibox i is AE

.

What is the probability that no message will
arrive at

any of
the mailboxes during the next

time period of E

if arrivals at different boxes are independent ?

Let Ei be the waiting time for a message to arrive at
mailbox i

.

Then ki n Exp Chi ) .



The probability that no
mail armies of box i danug

time E is

PE Ifi > EJ = e-
Rit

.

=Gift )

The probability that no mail
arrives at any box is

PEA, >E & .
- -

& *u >t] independence
= PEK, >t ] . PEHz > t ] - - - a PE Hu > t] of Ei

= e-Art . e-
ME

.

.
. .

. e-
tht

Galt ) .
. . Gutt)

= e- ④at Act
- -

- tin )t

Proposition : If Hr , . . . , Hu are independent RVs , . Hi ~ Exp (Xi) ,
then

min ( H
, ,
- . . , Hu )

n Explant - -
- tan )



3. 2 The Poisson Distribution

The Poisson distribution models a scenario where a

sequence of events happens
:

• the time between events
is distributed exponentially

with rate a

• the times between two events aoe independent of

each other
.

We are then interested in how many events happen during
an interval of unit length (the length to which the rate it

refers
.

The Poisson distribution gives us the probability that
exactly k events happen during a unit interval.

To apply it
,
we need the rate D and we have to verify that

the underlying assumptions hold .



Examples : Essentially the same as for the

exponential distribution .

Question answered can be

about the number of

• customers arriving per hour at a shop during
a workday afternoon

• emails arriving per minute
at a mail server

• soldiers being killed by horse kicks per year

( classical application in Germany around
1900 )

whether assumption are satisfied
can be checked by

• measuring
the average wanting

time T

• checking whether the times are Exp ( Z ) distributed .



Let Ben , Hz , . . .
be independent exponentially distributed Rus

with rate D .

We interpret the Ki as consecutive

waiting times:

- IE
n
is the time until the first event happens

- IE
z
is the subsequent time until the

second event

happens
etc

.

What is the probability that exactly
k events happen

during the interval
Eoc 1 ]

( e. g. ,
within one hour , one day etc) ?



This problem deals with the sum of i. i.d ExpCA ) Rus
.

Given the Hi ,
let

u sum of waiting times

Ty : = [ Hi for first k events

[ = n
-

maximal k StG
and let

-

WE argue,uat
( Sk E t )

,

k events happen

in one time
unit

that is
,
N is the maximal member of consecutive Hi

,

starting with
5=1
,
whose sum does not exceed 1

.

Note
,
N is discrete . What B

P [ N= KI
,

4=0
, .
.
- ,
K
,

. .
.
?

Probability of exactly
k events in a unit time



Proposition :

✓ = k ⇒ To
.

E 1 and Hien Z A - Su
.

Plan : Let f be the density of Eun
and fee of Su .

Then

• fcs) . fact) is the joint distribution of Hat , and Tce

• PIN -- k ] = PIKE 1 ,
Huta > A - Su ]

= for tutti ↳ fess dsdt

"

: 'The zo
• Hy 20

• Ice , Hut , iudep

We know fcs) = A e-
s

.

But what is fu ?



General consideration : Let H
, y be independent.

It n fct)
, y n g Cy) .

Then
* + y n ft g

where co

( tag) ( z) = ) text . get - x ) dx

- A

• f-* g is the

• Iterate over all combinations of convolution of
numbers that sum up to E :

X t Cz - x ) = z f and g

• Multiply their probabilities :

f- Cx ) - g CZ - x )

• Sum them up :

integrate



Find out fu !

• fact , = a e-
At

t

• fact I = ( f. * f.) LE) = I f. co fact -s) ds
O

= got a e- is . he
-Mt - s' ds

= 172 got e - A tt
- s)
ds

= N lot e- At ds = Rett lot ds

Z
- At

= ate



• fzct ) = ⇐ * Htt)

= Iota 's e- As a e-hit -s) as
= I e- "t J! s ds = I II . e-

At

• fact , = dk
t e- it ~ yo

.

CK - r ) !

Density of K - fold sum
Also called Gamma distribution

of i. i. d exponential RV-
s T' ( k

, I )
with frequency a



Now , let's calculate :

~ fu n f

PIN -- k ] = PI Tu El ,
Huta > A - Ice ]

-

I
.

= for fact ) ↳ to) ds dt

= for a " ÷÷÷, e- at f? de
-as ds dt

= µ?÷, , fit
"
e-
at E - e-

"' II at

= µ?÷, , fit
"
e-
at
e-
"" - t' at

a



We continue :

Nk e

PIN -- k ] =

Tq, fo
ta - n e- at e-

Mt - t) at

= y?÷, , hit
"
e-
"
at

Nk e

=

,
fo t

""
dt e-

a

=f÷, I I e-
a
= Iie - n

This is the pmf of the Poisson distribution

with rate d
,
Poised)



Excerpt : Assume
,
on average there

are three
't =3

accidents per week
on the highway between Trento

and BZ . What is the probability that there is at

least one accident
this week ?

Three accidents per
week ⇒ frequency A =3

A = # accidents ~
Pots (3)

In general : P E m c- A Eu ] = €=mP[A
-

- k ) = e-
T

Here : PEA 213=1 - PIA Eo )

= 1 - P [ of
= O )

= i - to, e-3=1 - e-
3



Probability of at least 5 accidents per
week

.

.

A zk

PEA 253 = -2
e-
3

4=5

4 3k
= l - E Ic.

e-3
= r - PEA E4]

↳⇒

Probability of at least 5 accidents in two weeks :

• new wait time : 2
weeks instead of 1

• new frequency : 6 per two weeks

• new RV Az ( = # accidents in 2
weeks )

~ Pots ( St 3) = Po is CG)

"
6
"

-
G

= A - P [ Az E 4 ]
⇒ PE Azz 5 ] = n - I e

KI

-



Mean and variance

Exp Cal has rate a
,

i.e
.

,
a events per Acre unit

⇒ Poised ) has mean d ?

Proof : Let An Poisha ) . Then

A pk
-n

EEZ ) = II. *¥:
e-
"

= a -2 ⇒ i.
e
"

In CK- n) !
4=1

= A en - e
"

= A



K

EE 't
'

] = E.ae#?:,..e-'=ae-tE.kTIii
p

k

=
a e-

"

E Ck ta) A-
k !

4=0

-

-
de

-" III. " IT t.E.ir . '¥ )

= de
- " ( Aed t e

"
) = At th

Var GE ) = E [H
'
) - ECHR = N ta - D2 =D

So
, µ= A

and o
'
= A



Poisson and Binomial
Mean of Bcuip> ⇐ n -

p

suppose It ~ B. Chip) mean of poison - A

view A = u - p A)

PEH -- k ] = Ck ) p " ( t - p )
" "

⇒ p
-

-
I
n

u !
=

u ! cu - a , , p
"
( r - p )

" - k

u !
=

u ! cu -un.

"
( e - I )

" "

z
U

* ) Idea : Probability p ( small ! ! ) for a car to have an accident .

Many cars
,
n ( large ! ! ) .

⇒ Rate of accidents = u . p
= A .



u !
PIK - k] =

u ! cute , ,
"
le - E )

" "

e
. ,

hung
.

let Elke"

"

= if g÷u-E
( e - E)

"

→ n buns, 'Z=o
In

Therefore , p[A=k ] z I÷ e-
d

or

Note : This is a rule

Ben
, p ) I

Dois Ch - p) of thumb from the

time when computers

for large w and small p .

were rare
and slow -



Example 58 The number of customers in a bar

is on average
4 per

hour
.
What is the probability

that there are no more than
3 in 2 hours ?

E : # customers / hour ~ Po is (4)

Ez :
# customers 12 hours ~

Pots ( 4 t 4)
= Poise 8)

PEEL C- 3 ]

Chan
n
t Chow Z

59
iudep .



Example 58 The number of customers in a bar

is on average
4 per

hour
.
What is the probability

that there are no more than
3 in 2 hours ?

Let Her = # customers in 1st hour
Remember the

¥2 = # customers in
2nd hour

Poisson story

§
• An , He independent ⇒ Hit Hz Poisson

• Rate of Ifn THz is 4+4=8 in 2 hours

'

Reproductive property of
the Poisson

PETE , th E3 ] = ¥
,

e
- 8 ÷

"

= 0.423



The Poisson distribution is reproductive in the following sense .

Proposition : let Ann Docs ( de )
,
Hz ~ Poi s (Az)

,
Ha

,
Hz Ned .

Then

It
,
t Az N Po is Cantar )

Proof ( by story) : IE
,
counts events of type 1

with rate in
,

H2 events of type 2 with rate Az ,
which happenindependently

.

What is the rate at which both
birds of events

happen ? Clearly , Art Az .

Alternative proofs by calculation (see
lecture notes of

19120 or scrip hem .



Suppose there is a shop visited by a costumers per
hour

.

Suppose that a fraction of p are female and of

(r -pl are male
.

How is the number of female customers

distributed ?

I # female customers per
hour

F N Pois( pm )



Suppose there is a shop visited by a costumers per
hour

.

Suppose that a fraction of p are female and of

(r -pl are male
.

How is the number of female customers

distributed ?

Answer :
Bois Cpd )

,

since p -7
is their rate

of arrival .


