
3. 5 The Normal Distribution

Since the Ath century astronomers developed more and

more precise
instruments to measure the position of stars .

At the same time they noticed that their measurements

always contained errors and they were keen
to understand

how those errors were
distributed

.

In 1809 Carl Friedrich Gauss published his method

of least squared errors and
related it in passing to a

distribution that since then is
known as the Gaussian .

The British astronomer John Herschel
in 1850demonstratedhow this distribution arises from simpleassumptionsabout the underlying principles . We give here a

derivation from the same assumptions with elementary
arguments .



Astronomers determined the coordinates of an object in the

sky with telescopes that can be positioned in horizontal

and vertical direction . The object would have a unique

position , but the astronomer would measure a (slightly)

different one .

Let us assume
that positions are described

as Cay )
-

coordinates and that the
exact position of the object of

our interest is the origin (0,0 ) .

The Hay) - measurements

by an astronomer can
be seen as the values ofrandomvariables H, Y , which have a joint distribution .

Let dcx , y) be the density of that joint distribution .

This is then a probability distribution of errors , since every
measurement other than

(010 ) is erroneous.



What are reasonable assumptions about d ?

Herschel proposed two :

r

• The probability of errors lay)
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should not depend on their
i

.
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TX , y)

origin . i

• Errors along the x-axis should
i

be independent of errors along

the y - axis .
(Astronomers have two distinct mechanisms

for the calibration of their telescopes in
each direction)



What does this mean mathematically ?

• The distance of key) to the origin is Vx2

( Pythagoras !) . Therefore, there is a function

g : IRI → Rto such that

day I = gulati)

• Let f-* , f-y
be the marginal densities of d .

Then the independence of It and Y implies

dcxiy ) = f-* HI . fyly) .



Let us first investigate the relationship between f-* and fry .

Sue d depends on the distance of the argument from the

origin , we
have

dcx
,
o) = g -41×270 ) = g (Voter) = d lo,x)

Hence
,

f-* Cx ) . fyco) = dcx, o) = d co, x) = f-* Co) - fycx)

and therefore

f-yuh = to, - f# 'X
.

Both fit and fy are densities . Thus,

r -- Satyendra =tf* . I,rt*u4de=tf,÷ . 1=4%1,
we conclude that fycx ) -- f# HI f. a . X EIR



We have seen that It and y have the same density , which
we denote as f . Since day , = get 2)

,

we leave

gcVx2ty2 ) = f-Cx ) . f- Cy) f. a. x. y e
IR

For nonnegative x. y , we
have x -- VII and y = Nyt.

We can then rewrite this equation as

g
N 2) = ftr) . f Crye ) .

We then see that the function g CF) turns

sums of squares
into products of values of ftp.) .

We also have for nonnegative x
that

g ( x )
= gelato ) = f ( x ) - f co) = K - fcx)

with K = f cos , or fill = ¥941 .
.



From the equation

g
N 2) = f-HIT ' f (Nyt )

hee then conclude that

gHx2tyT) = fNII ) - fNyt) = Ie gCHIT - g Crye)

for all x , y e CR
.
Since every nonnegative number is the square of

some number, this also shows that for all u, ve Rto we have that

glint) = Ie gala . g Crv)

Multiplying this by fz , yields

fee glint) = Ie gala . Ie g Crv) .

With hca ) : = Izz g Nu) , this is

h cu tu) = h ( u )
- hcv)

,

u
,
u e Rto



From

hcwtu ) = h ( u )
- hcv)

,

u.ve Rto

we conclude , based on our study of exponential functions ) that

he w ) = a
"

for some e so
.

Since hey = Izz guru) , we have
1

zag
CHI ) = a

"

,
uzo

We also had gcxl = K
- fox ) . Thus

at = fzzglrx) -- fo . K - flat ) -- I f- ( VI )

⇒ f tht) = K - at

+2

⇒ fix , = f ( VI) = K - a
,
Xzo



So
,
we have

f-as = Kraft
,
f. a X 20 .

What about negative x ? Note that

f- Cx ) - f co) = g. ( two )
= gHc-xTto2 )

= f C- N - fco)
,

hence

f-Cx ) = fc - XI , f. a. x EIR .

Therefore,

f- Cx ) = K - at
'

f. a. x EIR ,



So
,
our marginal density f -- fit = fy has the form

feel = Kat ?

What does this mean for a and K ? This can
be

concluded from the requirements of a density :

f- zo and I taxi d- = 1.

The first condition is obviously met ( at > o , f. a .

XECR )
.

The second implies that act , since otherwise fight = 0.

Therefore let a :-. log 1a , which is greater
0
.

Then

fill = K e-
a
'

.



dk,y) = fix) . fly)

o

¥

y
'

x



Now
,
K and x are tied together by the constraint that

K Jaz e
-ni de = 1

.

Determining this constraint is made difficult by
the fact

that antiderivatives of et
'

cannot be represented by

an elementary expression .

However
,
our original interest was

not in the density f,

but in de, y ) = feel . fcy)
.

What can we deduce from

1 = I,pIµdchy) de dy = K2 fµfµ e-
am
e-
a Y
'

de dy

=
Kt Iz ?



First
,
we concentrate on Iz :

I fµfµ e-
a #
e-4

'

de dy = f) e-44247 de dy
RR

The integrand depends only on the distance r of its argument

from the origin : if X. y) is on a circle with radius r,

then the integrand has value e-
- r ? far

A circle with width Ar and
radius r l

has approximately area
2T r - In and

Tr

contributes approximately a value

e-
a"

. zit r Dr

to the integral . With Ar →o this gives

Iz = If zit r e- - r
'

dr
.

This can be evaluated .



The next two pages are
an alternative derivation

of the equality
as

f) okay) d- dy = K2 ) zit r e-
at
dr

KIR o

which takes account of questions during the lecture
.

More information can be found, for instance on Wikipedia,

in articles on

• shell integration
• polar coordinates

• Gauss integral
Note that this is not an exam subject but only intended
to help you understand the background of the normal

distribution
.



Integrating a Function with Rotational Symmetry

How can we integrate in an easy manner a function
that

depends only on the distance from
the origin ?

'

Icty, Pase,there
have integrated a function ④

>

• by first integrating ooo y far freed x ,

then the results over x , or
a

#

• by first integrating ooo x for freedy , €
then the results over y

l r

Alternatively we can integrate , for fixed

distance r z o c over all angles 0, 0 TO E 2Ec µand then integrate the results over r.

The result of integrating over Q has to be

multiplied by Utr , to take into account
the length of the circle

over which we Relegated .



S" I,§µ deny> d- dy .

The density at point
key) with distance

r

and angle Q is Ke
-%

(KY)

= Jojo der , O ) rdadr r

• at

€
= J J K

'

e-
ar
'

r da dr The density is constant
o

O
on every circle .

Over the circle of

= f! K'e-aol.rs#1dO-dr radius r
,
it contributes

Zttr .
e--

ne

,

i.e.
, function value times

= K2 f! e-
"
t

- 21T r do
length of circle line .



Iz can be evaluated using the substitution rule :
Here

,
f. g

are just
symbols,

Joo 2 #r e-do
'

dr = C f
-

tiger )) - g
'
Cr) dr not the

functors
we had

= - IL go
.

← tears, Einar before !

g I
.

= - I I feel de
n

g I

g I
.

= - I f - e
- Z de

n

g I

=
- Ia [ e-Zig!!

'
= - I [ e-

t

]!

=
- Ia ( o - n ) = LI



We had the constraint K
'
Iz = ?

Hence
, Kitty = 1 and therefore K -

- VIT .

Thus

f-HI = tf e
-
xx
'

is the pdf of IE and Y .



Mean and Variance of f :

fee , = tf e
-
d"

Mean : clearly , f is symmetric around 0, that is, feel =fc
-x)

.

Hence ,
the mean µ ,

which is the center of gravity, is O .

Variance : we apply integration by parts ff.gl = f g -ff
'

g

or = Jack - us
' feel ok = 1,2×2 feel dt ,

f g

= K f x' e
-
d '
'

de

ah

- K Spf-fax) L
-ka - e-
"2) de

f g f
'

g

-

- K ( [ I - Eax ) ( E"
'

) )! - 1*-1. e-
"
'

de)

= Iz k 1¥
-
*

de = La



General Form of Normal Density (with µ=o)

So
,

82 = -1 ⇒ a =
-1

29
282

⇒ K -- Ff -

- Fi -E -

- III.
Hence i

1

KI e
e

- ¥2
f- Cx ) = -

This is a density with mean µ=o
and

variance 82
.



General Form of Normal Density with Arbitrary Mean

Imagine the star we are observing is not at position Coco )
,

but (µ , v ) .

Then the error deusitity would depend
on the distance from that point, that is, on

-

Tl ex -Mft Cy - up.
In that ease the marginals would have

the form

i ⇐uI

⇐•
e- 282

or the analogue one with u .

We say that a
RV with that

density has a normal
distribution Nim , o

'

) .

In the case of

Nba ) ,
we speak of the standard

normal
,
which has

density
del -

- Ita e
- ¥

.



Cumulative Distribution of the Standard Normal

The cumulative distribution (Cdt) of the standard

normal is denoted as It and satisfies

Teen = TE Io
.

e- ÷ ok
.

However
,
Io cannot be represented in elementary terms

( i -e ., there is
no formula) .

It can be computed

approximatelyby numeric integration . Implementtous exist in
statistical

libraries ( R , Java packages) . There
are also tables .

Often
, given probability p , one is interested

in the x such that

Iocxl =P [ It
Ex ] =p .

that is

× = Ifip ) .



Tables of the Normal

Tables are the traditional means to look up values of Io .

To avoid redundancy , they only contain values Iocx,

for x 20.5.

The symmetry of f
is reflected by Te as

Ioc - x) = A - F- Cx)
,

XZO
,

since for an Ncaa ) - distributed RV If we leave

symmetry
of of

Ioc - x ) = PLZ E
- x] = PEZ > x)

=
A - PEZ EX]

= 1 - TECH



Properties of Normal Distributions

we say that It is normally distributed if

It nW(µ ,
82) for some geek , see IRT .

Proposition : Let H, y be normally
distributed and

independent, a
,

be IR
.
Then

• att t b

• Ht y
are normally distributed

Proof ( Idea) : If IE n f (densify f ) , then
alt t b ~ g

where gey ) = f- ( YAI ) ,

because y = axtb
⇒ x =

Check : if f is a normal density, then
so is g .

The second part is more difficult, needs
convolution



Corollary : Hr NCµ* , 8*2 ) , You NCµy , 85) , a, BEN .

Then

• alttbn.NL#*tb,a2oE)

• Ht Y n NLM* try , 8*2+85)

we denote RVs that are Noir ) - distributed as Z .

Proposition : Let Zn Ncar )
,

IE n Nfu,E ) .

Then

• e -2 +µ
~ Ncp .

T)

• HOI N NC oil)



trample 61 : we want to send signals Oct over a

channel with noise
.

We encode

0 as - Z

r as 2
.

The receiver sees R = x t N
,
Nu Nco , r )

and decodes

R Z 0.5 as l

R C 0.5 as 0

What is the probability of an error in each case ?



Sender : O as - Z
p = × + µ

Receiver : R z o.si as l

r as 2 R C 0.5 as 0

Error in receiving l :

PER co - 5/5=2] = PEX +Nco.5fx=2)

=p -2 NL
- 1.5 ] = PEN > 1.5) = l - PINE 1.5 ]

in R : dnorml - 1.5 ) II n - Io ( 1.5 )
-

look up

t.gl#...
" task



Sender : O as -2
p = × + µ

Receiver : R zo.si as l

r as 2 R C 0.5 as 0

Error in receiving 2 :

PER 20.51 S = -D= PEX to 2051k. - 2)

= PE - 2+020.5 ) = PEN 7- 2.5 )

= I - PEN L 2.53 = 1 - ⑤ ( 2.5)



Sender : O as -2
p = × + µ

Receiver : R 20.5 as l

r as 2 R C 0.5 as 0

Error in receiving l
:

PER C 0.515=1 ] =
P Ext NC 0.514=2 ]

= PI N e - 1.5 ] = PEN > 1.5) = 1 - PEN El -5)

= A - Icd - 5)

Error in receiving 2
:

PERI 0.515=0 ] =
P Ext NZ 0.51 x = -2]

= PI Nz 2.5 ] = 1 - PEN c- 2.5]

= A - OI ( 2.5 )



Example 62 : suppose the height of European males is

normally distributed
with mean fe=

177.6 cm and standard

deviation 6 = 4cm -

• What is the probability that among two
brothers

the older is at least 2cm taller than the younger

( assuming independence of their height ) ?

Let ye be the height of European men and Ten , Jez two

independent copies . let D : = Hr - Fez .

We are interested in

PIDZL]
.

We know that

Ha , He ~ Nc µ ,
84 ⇒ - Jean NC -µ , 82 )

⇒ D= N. - H n Nlµ -y ,
82 to ')

= NIO ,
282)



Then

PED 223 = PELED Eff, ] = PIZZI, ]

= r - PEZ EFE 3=1 - ⑤ CET )

I 1 - Io ( 0.3536 ) = 0.3632



The 68 - 95-99.7 Rule

let 2- ~ Noch) .

Then

PE - l E Z El 3 re .

68

PE - 2 EZ E 23 I .
95 That is

PE - 3 EZ E 33 I -
997 68% of all

1
standard

values deviations)
For If ~N(prod ) , this means 95%

are 2 of the
within mean

PE µ - GE Hereto )
I. 68 99.7% g

PEM - 26 E Heft 20 ) re .
95

PIM - 36 EH eµt30 ) I. 997



Entropy of Distributions

Information theory has
been developed by Claude Shannon in the

late 19 To 's to analyze how much information can be transmitted

over a communication channel,
e.g.
,
a teletype connection

.

Over that line ,
characters are sent . However different characters

appear with different frequency
.
Rare characters are more

surprising
and carry therefore

moue information .

Let pi be

the frequency of
letter ei ,

considered as probability of q. .

How can owe reasonably
measure information consent, if

the quantity of information
transmitted by character ai is to

be a function he pit of the poolsability of ci
?



Requirements on hrforneahou Measures

A function U should satisfy hcp) Z O
.

Assume that all we
know about the chancel are

the

probabilities of characters .

Then the appearance of
the i - the

character is a random
event and the function

E : S → hi
,
- .
. ,u3

,

Ecs ) = E
,

if Ci is the character
that appeared in the

outcomes,

is a random variable .
The pmf of E is PIE =iJ= pi .

A sequence of characters
is then produced by a sequence

% , ez , -
- . of random variables . If the Ej are independent,

the information delivered by
a sequence cjncjz

. . - Cju

should be the sum of the individual information

quantities .

So hlcjn .
.
- gu ) = hlpccjn

. .
- cjnl ) .



Therefore , hccj , r . . Cju) = hccjn ) t -
- - t Uccju ) .

In particular, we
want that

h Cci Cj ) =
hcc the Ccj ) .

Due to independence, we
also have pccicj)

= pi
. Pj .

Thus , we want

ucpi - p ; ) = h Lpi) th Cpj) .

This only holds for arbitrary pi , pj
Er

, together with hops
21
, if

he p ) = log b p

for some bed .

Since log bx = - log z x , this is equivalent to
b

hcp ) = - log a p

for some a > r . The function h is called the entropy of the pe .



Entropy of a Discrete Distribution

Shannon defined the entropy of a finite distribution

Pri . . . , Pu as information weight
,

content of ci relative frequency
I f

u

H =
E - log pi - pi

-

E-n

This is the expected value of information on the channel .

When is

Hcp) = - log p
- p t

- bog ( n - p)Cr
- p)

maximal ?

We see ,
the less structure the

more entropy .



Entropy of a continuous Distribution

For a continuous distribution with density f one defines

A

H = I - bog Cfcxi ) text de

-
D

This definition is an analogue of the owe by
Shannon

,

not derived from first principles .

One asks
, given some

constraints , which
distribution

satisfying the constraints
has maximum entropy .

Intuition : Higher entropy means more surprise

means less order
means more

chaos .



Distributions with Maximum Entropy

Maximum E. Distribution
Support Constraint

[ a. b] none

[ o , ) ETH ] =L

( - es ,
es ) EEK] -- M ,

Var GE ) = @
2



Distributions with Maximum Entropy

Maximum E. Distribution
Support Constraint

[ a. b] none Utaib]

[ o , ) ETH ] =L Exp Cd)

c- as .es ) ETH] -- M ) ✓ (µ ,8)
Var GE ) = @

2


