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4 Sampling

4. A
.
Sample Mean and central Limit Theorem

Suppose we take a
series of measurements from some population.

( e.g. , height ,
duration

,
etc

.) suppose the quantity we aoe

measuring is distributed with mean µ
and variance 82 .

The sequence of measurements
can be modeled as a sequence of

RVs Ha , Has . - , Hu that are i. i- d .

The n - th sample mean is the RV

KT : =

EI ki
U



We know that
u

E E Eu 3 = EE I IZ ki ] = I -2 Effi ] = I - u -u =p
ie n

u

Var ( Eu ) = Var ⇐ IZ ki ) = In -2 Var# i) = Feu . E = In o
'

ie n

That is
,

• the mean stays the same

• the standard deviation approaches 0

This is the reason behind the weak law of large numbers :

PL l Eu -ul - e ] → o ( u → s)

for all possible bounds E >0
.



What is the Shape of the Distribution of Eu ?

Problem : Eu is squeezed by the division by u .

Consider instead

Yi
:=¥a
j .

Then E- [ Yi 3=0 , Var ( Yi ) = Var (* =# Valk :) = 1 .

The Hi are i. i. d , so also the Yi are i. E -
d

.

let un :-.

'

= ii. YT - In

Then E[Un ] = In - ELYT ] = VI - 0=0

Vartan ) -- Var # .tt/--uVar(y-n)-- u - ha - 1--1



The central Limit Theorem (CLT)

The CLT says that the distributions of the Un , Ci - e ., the colts)

converge towards the calf of the
standard normal .

Theorem ( Lindeberg - Levy) [Central limit Theorem )

let Ki be i. i. d . Rus with mean y
and variance 82 and let

• Un
-

-
= If ( Eu -m)

• Fu be the cdf of Un ( i.e.
, Fuca

=P Clu Ex] )

ooo Io be the cdf of Nco ,
t )

.

Then

him Fuk ) = Io ex) f. a.
x ER

uses



Convergence in Distribution

This kind of convergence is called
"

convergence
in distribution

"

,

which is the weakest kind of convergence among RVs
.

For instance , the weak Law of large Numbers says that

Tcu →µ
"

in probability
"

,
which implies convergence

in distribution .

The CLT says ,
Fu CX) → Tee)

,
but this may be fast for

some x and slow for others .

In practice , convergence is faster for × close to 0 ,
that is
,

close to the mean
,
and slow if Kl i's large , i. e. , far away

from the mean
.



Interpretation and Application of the CLT

Let Ki be i. e. d. RVs with mean µ
and variance 82

.

Let Su : = II. ki be the sum of the Ki .

The CLT says that for large u the normalised scum

l

Foo ( Su
-

un)

has approximately a standard
normal distribution .

From that one can conclude that

Tn ~ N(up ,
no
') approximately ,

where the approximation is best around the mean use .

Probabilities of the values of fu can then be approximated

by probabilities of a normally distributed RV
.



Example 64 : Au insurance company has 25.000 policy holders .

Considering the yearly claim of a policy holder as a RU,
the company

has observed that

• the mean of the claims is µ = € 320

• the standard deviation is 8 = € 540

What is the probability that the total yearly claim

is > € 8.3 Mio ?

let E ; be the yearly claim of policy holder E
,
and

Su = ¥
.

Ei be the yearly sum of clams, u = 25,000 .

En = In fu be the average of the claims .

We want to know P [ Su > J
,
where s= 8.3 Mio .



From the CLT
, we conclude that

Yu nN( um ,
not) approx .

Hence

Pisa > s3=PIII > ¥73
a. PEE > SIT 3--1 - EC7

Now :

UM = 25,000+320
Vh8= V25cooo- x 540

= Vasta 5.4×102×102
= 8x

G

s - nµ=
8.3×106 - 8h06 S - up 3 105
- = - you,

= 3×105 fuse VEI x 5.4

= 0.351 x to = 3.51

Thus P[ fuss] = A - ¥( 3.51 ) = l - 0.9998=0.0002



If we have access to R
,
we observe

% ~ Mum ,
not)

and we want to know

P[ Suss ] = A - P [ Tu Es]
,

which is computed by the
cell

Recall that

R requires
✓

the standard

1 - duorm.GS , n
-M ,
tho ) deviation

as argument



Normal and Binomial Distribution

Corollary : let Ki be independent Bernoulli ( p) RVs .

Then

u

Z ki - up
E- n

VI. Xp.cn#
> MOM ) in distribution

in distribution .

Rules of Thumb : A Binomial Chip) distribution is close to

• Wlup , upcr - p)) if both up > 5 ,
and her - p) > 5

• Poisson ( up) if up - 5 or uh -p)e5 ,
and u > 20



Example 65 : An airplane fits 150 passengers .

On a busy route , only 30% of the people that buy

a ticket take the plane .

If the airline sells 450 tickets per flight,
what is the

probability that the plane is overbooked ?

The number of passenger
P taking the plane is

a binomial RV with mean u -

p and variance n -per -p,

where

u = 450 , p
= 0.3

.

Let s = 150 be the number of seats available.

The plane is overbooked if

P > 150
.



We can approximate P by a RV 7C n NC up , upCr -PD .

Then

PIP > s ] = P [ IE > Sto. s]
§

adjustment when translating a discrete *)
into a continuous problem

=p [ H-wp-zsto.5-wp-g.es - Io (sto.5-wp-JYTVp-pjyu-lp.plIT Itpp

= l - Io ( d - 59 ) = 1 - 0.944 = 0
.

056 = 5.6%

Alternatively , with R we could have called

1 - dworm ( s to .

5
,
up , Input) )

E) called continuity correction



Example 69 : Opinion Polling

Suppose that 40% of the population support a certain

political candidate .

Given a random sample of 150 individuals, find

1.) the expected value and variance of the
number

of sampled individuals that favour
the candidate

.

2.) the probability that more than half the sample
favour the candidate .



Example 69 : Opinion Polling

Suppose that 40% of the population support a certain

political candidate .

Given a random sample of 150 individuals, find

1.) the expected value and variance of the
number

of sampled individuals that favour
the candidate

.

2.) the probability that more than half the sample
favour the candidate .

Let Ki be the answer of the
i - th person ,

"

yes
"

meaning
1
,

and
"

no
"

meaning 0
.

⇒ Ifi n Bernoulli Cp) with p
-
- O- y

let y :
' EE
.

Hi ⇒ y ~ Binocular , p) ,
with u = 150



⇒ EEG ) = n - p = 150 * 0-4 = Go

✓ar ( Y ) = n - p - Cr - p ) = 150×0.4×0.6 = 36

Check the rule of thumbs

U -xp .= Go > 5
,

u x ( e -p) = 9075

⇒ Approximate Y by N( Goc 36) .

We want

PEY > 753

How can we compute this ?



1) Use the Binomial#

Let 4 be the calf of Bitcoin ( 150 , o - 4) .

R delivers

PIG >753=1 - PE y c- 753=1-4175)
= O. 005225

2) Approximate Y by a y
'
n NC60,36)

p [ Y > 75 ) a PE y
'
> 75.53€ = 1- Ego.gg ( 75.5)

= 0.004892 ( with R)

1- Ef
75.5 -Go

* continuity correction T)



3) Approximation and Lookup in Z -Table

Transform Y
'

to Z n Ncaa) :

PEY
'

> 75.53 = p [ a
E ]

=p [ Z > 75-5160-3 = PEZ > 155g ]

= PIZ > 2.583 ) = A - It (2-583)

= 1 - 0.9951 = 0 . 0049



How Many Measurements are Needed ?

We can use the CLT to determine the number of

measurements needed for a required accuracy
if we know the variance of the distribution of
measurements

.

I



Example 66 : we want to measure the distance to a

star with

• accuracy a
= 1 ( i. e.

,
with absolute error E E = o. s) and

• certainty 8=9506 .

The variance of the measurements is 82=22 .

let d be the exact
distance and He be the measurements .

The sample mean Tfa is close to a normal with

ten = µ and Gf = E
u -

Then

Icu - Mu Eu - M
-=- r Ncaa ) approximately .

Gu 81 In



We want u such that

PE - E - Eu -ma E3 a- 8

That is

yep E- TIE < II LII -u) - TIE]

xp
-

L - F- E < E - TIE]

=
r - 211 - IOLITE )) -- 2- IOLITE )) - r ,

hence

Io ( In Az ) Z ¥8 .

This is an example
where we need

⇐ In Io z II ( ?tzI )
the inverse of the

cdf to reason

⇒ In z 2oz ¥ ( 1¥)
backward from a

probability to
an argument .



We need an n such that

In z Ea Elite)
with

a = l ,
8 = 2
, 8=0.95 .

This yields

Tu z 2 I
'

( dtz) = 4. IS ( 0.975)

=
4*1.960 ( in Z - table )

= 4×1.959964 ( with R)

Hence n z (4×1.960) ' = 61.4656

is a sufficiently large number of measurements.



4.2 Sample Variance

If we make measurements of some quantity ,
we consider this

is evaluating a RV H . If we make several measurements,

then we consider them as evaluations of u Rus Hn , . . ., Hu

that are ii.d.
, having the same distribution as k .

How can we estimate the mean value of
the

distribution of It , ie . , EEE ] ?

The average Icu of the Hi , In
-

- I ¥
,

Ki
,

should be

a good estimate .

How can we check that this is conceptually the right
thing to do ?



Unbiased Estimators

Suppose It , Kay . . . , ki g - - .

Coe i. E - d
.

RVs .

A function F ( xn , . . .

,
Xu )

, if applied to Itn , . -
- ,
Hu
,

defines a new random variable F ( Itn
, . . .

,
tcu ) .

An example is Ttu
,
which is defined by

Fca , . . . , Xu ) = In (Xnt - - - tXu ) = In
.

Definition : let Hr , . . . , Hu be i. i.d . Rus
,
F : IR

"

→ Hh a function and

⑦ be a parameter (Glee mean , variance ,
or skew) of the

distribution of the ki .

Then the bias of F with respect to a far In , .
.
.

,
Hu is

E ( FLAN , . . . stfu)) - O,
and F ( Aa , . . . , Eu ) is an unbiased

estimator if the bias -isO
.



Examples : (e) The average Eu
= Iu IZ ki is an unbiased

estimator of the mean µ .

(2) The average squared
distance from the mean

or

-

I -2 # i -ol
'

E-n

is an unbiased estimator of the variance .
( Note that we used

µ,

not In
.

)

Proof. 61 If have calculated
several times that

EEEis = I ¥
. .

EEK is = I - n - ten

(2) Remember that Var CH) = ECHO -rt)
.

Thus

E ⇐ ÷
.

#i -rt) - E Een E Cti -ut -- I - u - 02=02



Estihrahugthe#ane
Consider the function

Texas
. .

. . as = In Enki -D
' ⇒

with I = ! I.fi .
Then one can calculate ( see lecture notes of 19120) that

EE FCK , . .

.

, ku)) =
"

If Varese) .

Thus
,
this is an estimator with bias ! But

T.TT
'

( xn , . .
. . xu ) = In Enlai - IT = : se

is unbiased ! This is also called the sample
Variance

.

* I
"

T2
"

is an
abuse of notation , motivated by the attempt to estimate the variance



We can determine the quality of an estimate if

we know how the random variable that we want to

estimate is distributed.

Often .
we assume

that our ki are Ngu ,82) - distributed.

In that case,

Icu is ✓ (µ , I 82)
- distributed

.

.

What about the distribution of

s
'

= ÷ Iz
.

( ki - Eui ?

h - r

One can show that j
S
'

is distributed like the sum

Z! t - - t 2-I
- n of n - n independent Nco

, 11 variables

2-
n i -

- r ) Zun
.

This is the flu
- n
- distribution .



The Interplay of Normal and Chi - squared

Theorem 67 : let It
, , . . .

, Hu be i. i. d N(f.d) . Then

sample sample
mean

variance

• E
,

S2 are independent

• In Nlu , EE)

n - n sa ~ IT
•

gz
u - n



The Chi - Square Distribution ( 122 - distribution)

The distribution of the sum of the squares 2-ft - - - t ZF

of u independent Noel ) - Rus Zi is called the

Chi -
square

distribution of n degrees of freedom .

Notation : XT
.

It almost follows from the definition that

122 - distributions are reproductive :

A ~ Am
, Yu Xu ,

It
, Y independent

⇒ At y n Antu

There is a formula for the pdf of 127 ,

but not the cdf

⇒ values have to be computed by numerical integration .



Mean and Variance of 12?

Even without formulas for A} ,
we can find out the mean .

First consider tf
. By definition ,

Ed - kid
.

• Var ( Z ) -- EEZ
'

] t E- [ 2-32 = EEZ ] to

• Vertz ) = A

⇒ E[Xi3=E[ 2-23--1

Then

Effi ] - EEE t - -
+ ET) = ELIF] t - -

et ELE?] =

= u EEZ
'

] = u - r
.

Moreover ,
var (NE) = 2- u

.



t - Distribution 1What if we Don 't know the Variance ?
.

We know that

Her Nfl ,87 ⇒ In ¥# ~ Neon )
What happens if we replace 8 with s = VST ?

In Ijm =

In ¥5 z

- -

=

I

III. HIE you
2-

ARV Tu = ¥1,
has a t - distribution with

u degrees of freedom ,
woken Tun tu



The t - Distribution : Definition

Suppose 2- and tha are independent Rus and

• Z n NCO ,
t)

• In - Nu

Then the RV

Z

T : =
-

n y,¥-
is t - distributed with

u degrees of freedom ,

written Tu n tu

This uniquely defines cdf and pdf of the G - distributions
.



The t - Distribution : Properties

• Introduced by William Gosset (1908)
, chief brewer

at

Guinness, in a research paper published
under the

pen name Student . For that reason .
it is also known

as student 's t - distribution .

• It is bell shaped like the normal , but it is
wider

,

the tail is thicker and the peak is lower than the

peak of the standard normal.
Its parameters are

:

mean =L
hhdefned far u=,

O for h > a

variance = {
undefined for u =p , z

n

Iz for h > L





• It converges towards the standard normal
,
which can

be seen as follows :

EEE ] = Var ( Z ) t E ( Z)
'

=
1 t 02 = 1

If Zi are i. i. d . Near ) , then IZ Z? r Xf .

By the law of Large numbers ,
the average

EI = In ¥
.

Zi- EEE] = r cu → s)

Therefore
,

also

HI → r cues)
.



The convergence is
" in probability

"

,
as expressed in the

heck law of large numbers .

We now
can apply Slutsky 's theorem (see Wikipedia) , since

2- andHII are independent :

E-
→
Z

= 2- ( u -70, in
distribution)

^

The convergence is slower for the tail , that is, the

farther we are away from O
.

( cheek the table of the tu !)

• The t - distribution is practically
relevant only for

analyzing smell samples ( E 30 )
,
otherwise the

difference to the normal is negligible .




