Lecture Notes: Chapter 6

20/21

6 Hypothesis Testing

Goal: Show by an experiment that some measure has an effect. The statement about the effect has the following form: • the mean of a new distribution is different (+, L, >) from a standard mean po • the difference between two means  $\mu_1, \mu_2$  (of the distribution with and without the measure is different from O (+, <, >) The default assumption is: The new measure here no effect ( unit hypothesis) We only believe that the mershae has an effect if experiment data would have a very low probability (5%, 1%) in case the unit hypotheses were to hold.

Technically, the null hypothesis has the form (if it is about the mean);  
• 
$$\mu = \mu_0$$
 ( $\mu = \mu_0$ ,  $\mu \ge \mu_0$ ), or  
•  $\mu_n - \mu_2 = 0$ , ( $\mu_n = \mu_2$ ,  $\mu_n \ge \mu_2$ ).  
If the null hypothesis lets us conclude that the outcome  
of our experiments is unlikely, we adopt the

Concretely,

- we fix a low probability benel (caked "significance level") a,
   e.g. a = 5%, a = 1% etc.
- We take an independent sample of a random variable  $\mathcal{K}$  of size in and with average  $\overline{x}^{\neq}$ )

Suppose, our null hypothesis is:

· The wear of the distribution we measure is no, symbolically

 $H_0: \mu = \mu_0$ 

• Our measurement of t has average  $\overline{x}$ , which is different from  $\mu$ by  $|\mu_0 - \overline{x}|$ .

\*) We distinguish now between the outcome of a specific measurement, which leads to a number XER, and the approach of taking measurements and averages in general, modeld by the RVS Fi and F.

So, the 
$$\mu = \mu_0$$
 and found  $|\mu_0 - \bar{x}|$   
We accept the if the probability to see a difference  
of size  $|\mu_0 - x_0|$  is  $Z \propto$ , under the condition that the  
mean of the current distribution  $\mu$  equals  $\mu_0$ :  
 $P[[|\bar{x} - \mu_0| \ge |\bar{x} - \mu_0|] |\mu = \mu_0] \ge \alpha$ .  
We reject to and accept the alternative hypothesis  
 $H_{\alpha}: \mu \neq \mu_0$   
if this probability is  $< \alpha$ :  
 $P[[|\bar{x} - \mu_0| \ge |\bar{x} - \mu_0|] |\mu = \mu_0] < \alpha$ .

If the RV 
$$\mathcal{K}$$
 3 normally distributed, and we know  
the variance  $3^2$ , we can effectively potorm the test of the:  
 $P[[\overline{\mathcal{K}} - \mu_0] \ge 1\overline{x} - \mu_0][\mu = \mu_0]$   
 $= P[\overline{\mathcal{V}}_0 \frac{|\overline{\mathcal{K}} - \mu_0|}{3} \ge \overline{\mathcal{V}}_0 \frac{|\overline{x} - \mu_0|}{3} |\mu = \mu_0] \ge \alpha$   
 $= P[[\overline{\mathcal{Z}}] \ge \overline{\mathcal{V}}_0 \frac{|\overline{x} - \mu_0|}{3} |\mu = \mu_0] \ge \alpha$   
This inequality holds iff

$$\sqrt{\frac{1}{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$$

we call 
$$v = \sqrt{n} \frac{|\overline{X} - M_0|}{3}$$
 the test statistic for this test



Example 76: Suppose the normal RV X has variance 
$$3^2 = 4$$
.  
We want to test wheter X has mean  $\mu = 8$  (i.e.  $\mu_0 = 9$ ).  
We take a sample of size  $n = 9$  and obtain  $\tilde{X} = 9.2$ .  
The vequived significance level is  $\alpha = 0.05$  (= 5%).  
The corresponding z-value is  
 $z_{0.025} = 1.98$ .

Example 76: Suppose the normal RV 
$$\times$$
 has variance  $3^2 = 9$ .  
We want to test wheter  $\times$  has mean  $\mu = 8$  (i.e.  $\mu_0 = 9$ ).  
We take a sample of size  $n = 9$  and obtain  $\tilde{\chi} = 9.2$   
The required significance level is  $\alpha = 0.05$  (= 5%).  
The corresponding  $\varepsilon$ -value is  
 $\varepsilon_{0.025} = 1.98$ .

We compute the test statistic

$$V = \sqrt{4} \frac{|\bar{x} - \mu_0|}{3} = 3 \frac{9.2 - 8}{2} = \frac{3}{2} \cdot 1.2 = 1.8$$

Since V < Zo.025, we accept the null hypothesis.

p-Values  
Suppose we have the test statistic 
$$\sqrt{h} \frac{|\vec{x}-k_0|}{3}$$
.  
We can computed look up the probability of a result at  
least as extreme as one observation as follows:  
 $p_{v} = P\vec{L} |\vec{z}| \ge v \vec{j} = 2 \cdot P\vec{L} \ge v \vec{j}$   
 $= 2 \cdot (1 \cdot P\vec{L} \ge v \vec{j}) = 2 \cdot (1 - \vec{p} \cdot v)$   
We call this probability the p-value of one experiment.  
We accept the if  $p_{v} \ge \alpha$ , other we reject the and accept

the alternative hypothesis Ita.

Example 77: In Example 76, we have computed the

test statistic as

$$V = \frac{\sqrt{4}}{8} |\mathcal{K} - \mu_0| = 1.8$$

Then the p-value is 
$$p_v = p \left[ \frac{121}{2} > v \right]$$

Example 77: In Example 76, we have computed the  
test statistic as  

$$v = \frac{\sqrt{u}}{s} |\overline{x} - \mu_0| = 1.8.$$
Then the p-value is  

$$p_v = p[121 > v]$$

$$= p[121 > 1.8] = 2 P[\overline{z} > 1.8]$$

$$= 2 \cdot 0.036 = 0.071$$
This means, the will hypothesis will be rejected  
for any significance level  

$$\alpha > p_v = 0.072 = 7.2\%$$

Two-sided Tests

What we have described right 400 is a two-sided test:  
We reject the if the probability of 
$$\overline{X}$$
 being away from two  
at least as far as  $\overline{X}$  is less than a.  
Here, for away includes far to the right and far to the left.  
Note that the could how for acceptance is equivalent to  
 $\overline{X} \in (\mu_0 - \frac{2}{\sqrt{n}} \frac{2}{4/2}, \mu_0 + \frac{3}{\sqrt{n}} \frac{2}{4/2})$   
The test is called two-sided because it imposes a lower  
and an upper bit only a lower bound on  $\overline{X}$ .

6.1 One-sided Tests

If we want to check whether a new method leads to greater values than the previous (with mean pro), our will hypothesis should be

Ho: M & Mo

that is, the mean of the new method is not greater than the one of the old method.

Given a and the observed average X, we reject the if the probability of seeing an average ZX is less than a, that is:

Test Statistic of a One-Sided Test  
How can we check that  

$$P[\tilde{k} \ge \bar{x} \mid \mu = \mu_0] < \alpha$$
.  
By normalization, we obtain  
 $P[\tilde{k} \ge \bar{x} \mid \mu = \mu_0] = P[T_u \frac{\bar{k} - \mu}{\sigma} \ge T_u \frac{\bar{x} - \mu}{\sigma} \mid \mu = \mu_0]$   
 $P[Z \ge T_u \frac{\bar{x} - \mu}{\sigma} \mid \mu = \mu_0]$ 

The value 
$$v = \sqrt{u} \frac{x - u}{\sigma}$$

p-Value of a One-Sided Test  
The p-value corresponding to v that is, the probability of 
$$\overline{k}$$
 being  
at least as extreme as  $\overline{x}$ , is  
 $pv = P[\overline{z} \ge v] = (1 - \overline{\Phi}(v))$   
Again, the mult hypothesis is accepted if  
 $pv \ge \alpha$   
which is equivalent to  
 $v \le z_{\alpha}$   
and rejected if  
 $pv \le \alpha$ .

If the null hypothesis is  
Ho : 
$$\mu \ge \mu_0$$
  
and we have  $\overline{x}$  and  $\alpha$  as before, then we reject the if  
 $P\overline{E} = \overline{x} \ (\mu = \mu_0] < \alpha$ ,  
which is equivalent to  
 $P\left[\overline{T}\overline{h} = \frac{\overline{E} - \mu_0}{5} \le \overline{T}\overline{h} = \overline{T} - \frac{\overline{A}}{5} \right] \ (\mu = \mu_0]$   
 $= P\left[\overline{T}\overline{h} = \frac{\overline{E} - \mu_0}{5} \le \overline{T}\overline{h} = \overline{T} - \frac{\overline{A}}{5} \right] \ (\mu = \mu_0] < \alpha$ .  
Again,  $\nu = \overline{T}\overline{h} = \frac{\overline{Z} - \mu_0}{5}$  is the test statistic. The corresponding p-value is  
 $\rho_v = P\overline{E} = C \circ \overline{J} = \overline{E} (v)$ .  
We accept the if  $\rho_v \ge \alpha$  (i.e.,  $v \ge -2\alpha$ ) and accept the  
Otherwise.

6.2 Hypothesis Testing with Unknown Variance The theory is analogous to the one for the case of known variance, the difference being that instead of • the standard normal distribution N(0,1) and • the variance 5<sup>2</sup>

e than, the t-distribution with n-1 degrees of freedom

Example 92: A worrised neighbor claims that students  
drink on average 3 litres of beer every night.  
To moves hypote this claim, 25 rendomly selected students are  
observed. The observations yield:  
• a sample mean of 2.91 l  
• a sample standard deviation of 0.47 l.  
How can we verify the claim?  
Null hypothesis: Ho: 
$$\mu = 3$$
 (i.e.,  $\mu_0 = 8$ )  
Test statistic:  $v = \sqrt{n} \frac{(X - \mu_0)}{s} = 5 \frac{0.99}{0.47} = \frac{0.45}{0.47} = 0.9579$   
 $p - value:  $pv = P[T_{24}| > v] = 2P[T_{24} > v] = 0.5439$   
The experiment is constraint with the hypothesis$ 

Test Statistics if variance is unknown  $v = \sqrt{4} \frac{|\overline{X} - \mu_0|}{5}$ · Two-sided test: v ≤ t x 12, u-1 Acceptance if  $V = \sqrt{4} \frac{X - \mu_{0}}{S}$ · One-sided tests: Acceptance that  $\mu \leq \mu_0$  if  $V \geq t_{x, u-1}$ Acceptance that us no if