Lecture Notes: Chapter 5 20/21

5 Estimation
we observe i.i.d. RUs $\epsilon_{1}, H_{2}, \ldots$ and want to esticarte
μ and a^{2}

Unbiased estimators are

$$
\begin{aligned}
& \bar{X}=\frac{1}{n} \sum_{i=1}^{n} E_{i} \\
& s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
\end{aligned}
$$

How good are estimates obtained with them?
5.1. Interval Estimates

As estimates we provide intervals (a, b) such that

$$
\mu \in(a, b) \quad \text { or } \quad b^{2} \in(a, b)
$$

with a "high degree of confidence".

Assumption: E_{1}, x_{2}, \ldots are $N\left(\mu, \sigma^{2}\right)$ i.i.d. I We can sometimes drop this assumption due to the $C L T$)

Not with "high probability because we don't know the distribution of μ or δ^{2}.

Cases

- δ^{2} is known, μ is unknown
- both ∂^{2} and μ are unknown, interested in μ
- ∂^{2} is unknown (μ is who interest)

Interval Types:

- two-sided intervals: (a, b)
- lower intervals: $\quad(-\infty, b)$
- upper intervals (a, ∞)
5.2 Estimation of two-sided Intervals

Suppose we want to be " 95% confident" that $\mu \in(a, b)$. How should we choose a, b ?

Use Case 1: How good is, for given values x_{1}, \ldots, x_{4} for E_{1}, \ldots, x_{4}, the average \bar{x} as an estimate of the mean $E[E]$?

Idea: Design functions

$$
a(x), \quad b(x)
$$

with corresponding RUS $f=a(\bar{X}), B=b(\bar{X})$ isth

$$
P[\notin \leq \mu \leq B]=95 \%
$$

Terminology: $5 \%=100 \%-95 \%$ is the confidence level.

How Choose a, b ?
We consider the problem to determine constants a, b isth

$$
P[a \leq z \leq b]=1-\alpha
$$

$$
z \sim W(0,1)
$$

Trivial!

$$
z_{\alpha / 2}:=\bar{\Phi}^{-1}(1-\alpha / 2)
$$

Choose $a=-z_{\alpha / 2}, b=z_{\alpha / 2}$

In general define:

$$
z_{\alpha}=\bar{\Phi}^{-1}(1-\alpha)
$$

Next suppose, $\notin \sim N(\mu, 1)$, but μ unknown

$$
\begin{array}{rl}
\Rightarrow N & x \in N(0,1) \Rightarrow \mu-x \in N(0,1) \\
1-\alpha & =P\left[-z_{\alpha / 2} \leq \mu-x \leq z_{\alpha / 2}\right] \\
& =P[\underbrace{x-z_{\alpha / 2}}_{a(x)} \leq \mu \leq \underbrace{t+z_{\alpha / 2}}_{b(x)}]
\end{array}
$$

Note: The interval boundaries are RU, not the mean μ.

Finally, $x_{i} \sim N\left(\mu, z^{2}\right) \Rightarrow \bar{E} \sim N\left(\mu, \frac{1}{4} \partial^{2}\right)$

$$
\begin{aligned}
& \Rightarrow \bar{x}-\mu \sim N\left(0, \frac{1}{4} b^{2}\right) \Rightarrow \mu-\bar{A} \sim N\left(0, \frac{1}{4} b^{2}\right) \\
& \Rightarrow \sqrt{n} \frac{\mu-\bar{x}}{\sigma} \sim N(0,1) \\
& \Rightarrow 1-\alpha=P\left[-z_{\alpha / 2} \leq \sqrt{4} \frac{\mu-\bar{H}}{3} \leq t_{\alpha / 1}\right]
\end{aligned}
$$

$$
\begin{aligned}
1-\alpha & =P\left[-z_{\alpha / 2} \leq \sqrt{n} \frac{\mu-\bar{x}}{\beta} \leq z_{\alpha / 2}\right] \\
& =P\left[-\frac{8}{\sqrt{n}} z_{\alpha / 2} \leq \mu-\bar{x} \leq \frac{\partial}{\sqrt{n}} z_{\alpha / 2}\right] \\
& =P\left[\overline{\bar{\epsilon}}-\frac{3}{\sqrt{n}} z_{\alpha / 2} \leq \mu \leq \sqrt{\epsilon}+\frac{\sigma}{\sqrt{n}} z_{\alpha / 2}\right]
\end{aligned}
$$

Proposition: Let $\bar{\epsilon} \sim N\left(\mu, \frac{1}{u} \sigma^{2}\right)$. Let

- $a(x)=x-\frac{\sigma}{\sqrt{n}} z_{\alpha 12}$
- $b(x)=x+\frac{3}{\sqrt{u}} z_{\alpha / 2}$.

Then

$$
P[a(\bar{x}) \leq \mu \leq b(\bar{x})]=1-\alpha
$$

We say that $(a(\bar{x}), b(\bar{x}))$ is $a(1-\alpha) \cdot 100 \%$ confidence interval for the mean, for a given \bar{x}.
5.3 Estimation of One-sided meteroals

Proposition: Let $\bar{\epsilon} \sim N\left(\mu, \frac{1}{n} \partial^{2}\right)$ and let

- $a(x)=x-\frac{3}{\sqrt{n}} z_{\alpha}$
- $b(4)=x+\frac{8}{\sqrt{u}} z_{\alpha}$

Then

$$
\begin{array}{ll}
\text { • } & P[a(\bar{X}) \leqslant \mu]=1-\alpha \\
& P[\mu \leqslant b(\bar{X})]=1-\alpha
\end{array}
$$

$(a(\bar{x}), \infty)$ and $(-\infty, b(\bar{x}))$ are upper and lower confidence intervals
5.4. Fixing the Interval length

Suppose we want a confidence interval $(a(x), b(x))$

- for $(1-\alpha) \cdot 100 \%_{0}$
- of length aftmost L,

How many observations are needed?

- The length of $(a(\bar{x}), b(\bar{x}))$ is

$$
\begin{aligned}
b(\bar{x})-a(\bar{x}) & =\bar{x}+\frac{b}{\sqrt{n}} z_{\alpha / 2}-\left(\bar{x}-\frac{b}{\sqrt{n}} z_{\alpha / 2}\right) \\
& =2 \frac{\sigma}{\sqrt{n}} z_{\alpha / 2}
\end{aligned}
$$

- Hence $b(\bar{x})-a(\bar{x}) \leq L \Leftrightarrow 2 \frac{3}{\sqrt{4}} z_{\alpha / 2} \leq L$

$$
\Leftrightarrow \sqrt{4} \geq 2 \frac{\partial}{L} z_{\alpha / 2} \quad \Longleftrightarrow \quad n \geq\left(2 \frac{\partial}{L} z_{\alpha / 2}\right)^{2}
$$

5.5 Where We need the Normal

We only used the assumption that

$$
\bar{E} \sim N\left(\mu, \frac{1}{4} \partial^{2}\right)
$$

Due to the CLT, this is also apporoximalely true for averages of non-normal RUS.

Rule of Thumb: For $n \geq 30$, we can assume a normal distribution of E
5.6 Confidence Interval tor μ With Unknown σ^{2}

Reduction to $\sqrt{u} \frac{\bar{x}-\mu}{\partial} \sim N(0,1)$ does wot work.
However, if x_{1}, x_{2}, \ldots are i.i.d. $N\left(\mu, \partial^{2}\right)$, then

$$
\sqrt{n} \frac{\bar{x}-\mu}{s} \curvearrowright t_{n-1}
$$

Analogously to z_{α}, where

$$
P\left[Z \leq z_{\alpha}\right]=1-\alpha
$$

define $t_{\alpha, n}$ by

$$
P\left[t_{n} \leqslant t_{\alpha, n}\right]=1-\alpha
$$

The areas before $-t_{\alpha, n}$ and after $t_{\alpha, n}$ have size α.

Analogone theory holes with

- $a(x)=x-\frac{s}{\sqrt{4}} t_{\alpha / 2, n-1}$
- $b(x)=x+\frac{s}{\sqrt{4}} t_{\alpha / 2, n-1}$
- $a(x)=x-\frac{s}{\sqrt{4}} t_{\alpha}, n-1 \quad$ for $(a(\bar{x}), \infty)$
- $b(x)=x+\frac{s}{\sqrt{4}} t_{\alpha}, n-1 \quad$ for $(-\infty, b(\bar{x}))$

Remaoles: (1) This rests on the assumption that the x_{i} are normal.
(2) Usage of t_{n-1} only necessary for small n ($n \lesssim 30$), since

$$
t_{4} \rightarrow N(0,1)
$$

(3) Whether t_{n-1} is needed or $N(0,1)$ will do, depends on the confidence level:

- the higher the confidence, the smaller α, the further $t_{\alpha, n}$ to the tail
- the slower convergence to the normal
5.7 Confidence intervals for 3^{2}

Recall:

$$
(n-1) \frac{s^{2}}{3^{2}} \sim x_{n-1}^{2}
$$

By definition,

$$
\begin{aligned}
1-\alpha & =P\left[x_{1-\alpha / \mid n-1}^{2} \leq(n-1) \frac{s^{2}}{8^{2}} \leq x_{\alpha / L \mid n-1}^{2}\right] \\
& =P\left[\frac{(n-1) s^{2}}{x_{\alpha / 2, n-1}^{2}} \leq \delta^{2} \leq \frac{(n-1) s^{2}}{x_{1-\alpha / 2 \mid n-1}^{2}}\right]
\end{aligned}
$$

The 2-sided boundary functions are then

- $a\left(s^{2}\right)=\frac{(n-1) s^{2}}{x_{\alpha / 2, n-1}^{2}}$
- $b\left(s^{2}\right)=\frac{(n-1) s^{2}}{x_{1-\alpha / 2, n-1}^{2}}$

One-sided boundary functions are

- $a\left(s^{2}\right)=\frac{(n-1) s^{2}}{x_{\alpha, n-1}^{2}}$
- $b\left(s^{2}\right)=\frac{(n-1) s^{2}}{x_{1-\alpha, n-1}^{2}}$

