$$
\text { PTS - Chapter } 1
$$

1. Introduction to Pwobability Theory.
P.T. concests to rpeak about wnerterinty
provides (games of chane, recurning events with some palton of vaiction, $e . g$., cueasurements, balls in a Gallon board, et.)

- wethads to guantify uncertanity

Example: Relling a ace D
What is $P(D=6) ? \frac{1}{6} \quad P(D \geq 4) ? \frac{3}{6}=\frac{1}{2} P(D<4) ? \frac{1}{2}$ Mearing:

1) In the Congrua, $1 / 6$ of the throw resulits in 6 .
2) There is 1 chance of 1 iv G that this therow resalt in 6 , frequentist subjective (Bryevian)

No c ouse Quences for methematical the ony
1.1 Events

Experiments:
I sample space ($=$ set of possible outcomes)
ρ is known, but not a specific outcome
Rolling a die: $\quad \rho=\{1,2,3, \ldots, 6\}$

$$
\# 9=6
$$

Rolling two die: $\rho=\{(1,1),(1,2), \ldots,(1,6)$,

$$
\begin{aligned}
\# \rho & =6-6 \\
& =36
\end{aligned}
$$

Galton board:

$$
(6,1), \ldots(3,4) \ldots(6,6)\}
$$

with u levels has outcomes

$$
\begin{aligned}
& \{1, \ldots, n+1\} \\
& \{0, \ldots, n\}
\end{aligned}
$$

ρ can also be rafinite.'

- measuring dstames: any uncubrer $m>0$ is poss outcome $=m \in[0.5,3.00]$
infinitely many reals in the interval
- How may y times ceo we have lo throw a de untie a G appears
\Rightarrow consider arbitrarily long sequencer of throws, even influite one

Events:
throw an even number E Even $=\{2,4,6\}$
throw two equal numbers $\varepsilon_{\text {equal }}=\{(1,1),(2,2), \ldots,(6,6)\}$ In general: $\varepsilon \leq \rho 8$ events are sets
\mathcal{E} occurs if outcome $\in \mathcal{E}$
x a the outcome of our experiment
in an experiment
Set operations on events
$\varepsilon \cup \mathcal{F}$ union (${ }^{\prime} \sigma^{\prime \prime}$)
$\varepsilon \cap F, \xi \mathcal{F}$ intersection ("and")
$\bar{\varepsilon} \quad$ complement ("lott) , $\quad \rho \vee \varepsilon=\bar{\varepsilon}$
$\varepsilon \backslash F \mathcal{F}$ end not \hat{F}

$$
=\xi \cap \widehat{F}
$$

Exaupe: $\varepsilon_{\text {poime }}:=\{2,3.5\}$
$E_{\text {even }} \cup E_{\text {prime }}=\{2,3,4,5,6\}=\overline{\{1\}}$
Even \cap \{prive $=\{2\}$

$$
\bar{\varepsilon}_{\text {prime }}=\{1,4,6\}
$$

Special case $\varnothing \subseteq \rho$, impossible event
Termonology

$$
\begin{aligned}
& \varepsilon \in \mathcal{F}=\varnothing \quad \text { disjoint } \\
& \bar{\rho}=\varnothing, \bar{\phi}=\rho \\
& \bar{\xi}=\varepsilon \\
& \overline{\xi \cup \mathcal{F}}=\bar{\xi} \cap \overline{\mathcal{F}}, \overline{\varepsilon \cap \mathcal{F}}=\bar{\xi} \cup \overline{\mathcal{F}} \\
& \sum \equiv \vec{j} \Leftrightarrow \mathcal{E} \leq \mathcal{F} \text { and } \mathcal{F}=\xi \\
& \text { Prounuciction }
\end{aligned}
$$

ξ, \mathcal{F} are exnivalent
1.2 Axioms of Probability
$P(\xi)$ probability of ε, is a real unmber
A1: $0 \leqslant P(\Sigma) \leqslant 1$
pairurze any two are disjoint
A2: $P(\rho)=1$
A3: If $\varepsilon_{1}, \varepsilon_{2}, \ldots$ are mutuady disjornt (i, e., $\varepsilon_{i} \cap \varepsilon_{j}=\phi$ for $i \neq j$)
then $P\left(\varepsilon_{1} \cup \cdots c \varepsilon_{u}\right)=P\left(\varepsilon_{1}\right)+\cdots+P\left(\xi_{n}\right)=\sum_{i=1}^{n} \varepsilon_{i}$, fiaiu (also cuolds for iufirite sacus)

What is $P(\phi)=0$ because
I. ϕ are digoint

$$
\begin{aligned}
\frac{P(\rho)}{} & =P(\rho 0 \phi)=P(\rho)+P(\phi) \\
\Rightarrow 0 & =P(\phi) \\
P\left(\xi_{\text {even }} \cup\{1\}\right) & \left.=P\left(\varepsilon_{\text {even }}\right)+P\left(\varepsilon_{1}\right\}\right)
\end{aligned}
$$

Proposition 1: $\quad P(\bar{\varepsilon})=1-P(\xi)$
Proof: $\xi_{n} \bar{\varepsilon}=\phi, \xi \cup \bar{\varepsilon}=\rho$

$$
\begin{aligned}
& 1_{A \times 2}^{=} P(\rho)=P(\xi \cup \xi) \underset{A \times 3}{=} P(\xi)+P(\xi) \\
& =0 \quad 1-P(\xi)=P(\xi)
\end{aligned}
$$

What $\stackrel{a^{\text {bout }}}{P(\varepsilon \cup \mathcal{F})}$ in several?

$$
\begin{aligned}
& I \equiv \xi \backslash f \\
& \text { II }=\xi \cap f \\
& \text { III }=\mathcal{F} \backslash \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& P(\xi \cup F)=P(I \cup \mathbb{I}-\mathbb{I}) \\
&=P(I) \cup P(\mathbb{I})-P(\text { II })(A \times \xi) \\
& P(\xi)=P(I)+P(\mathbb{I}) \\
& P(F)=P(I I)+P(\pi) \\
& \Rightarrow P(\xi \cup F)=P(\xi)+P(F)-P(\xi \cap f)
\end{aligned}
$$

Proposition 2: $P(\xi \cup \mathcal{F})=P(\xi)+P(F)-P(\xi \cap \xi)$
Exanipe 3:
Driukes Quiz
D3 dinks keer, to drinles wive

$$
\begin{aligned}
P(B \cup \omega) & =P(B)+P(\omega)-P(B W) \\
& =.68+.49-.35=1.17-.035=.82 \\
P(\overline{B \cup W}) & =1-.82=.18
\end{aligned}
$$

Definition 4: The odds of ε ir

$$
\frac{P(\xi)}{P(\xi)}=\frac{P(\varepsilon)}{1-P(\xi)}
$$

Says how muck more likely εs than $\bar{\varepsilon}$
Quiz: Odds of throwing a 4

$$
\begin{gathered}
\xi=\left\{43, P(\xi)=\frac{1}{6}\right. \\
\operatorname{odds}(\xi)=\frac{\frac{1}{6}}{1-P(\xi)}=\frac{\frac{5}{6}}{\frac{5}{6}}=\frac{1}{5}
\end{gathered}
$$

Trump example: $P(\underbrace{\text { T will be el }}_{2} ")=, 4$

$$
\operatorname{odds}(\Sigma)=\frac{.4}{.6}=\frac{2}{3}
$$

1. 3 Uniformity

Often: all outcomes are equally likely (only possible if Ifxite) and have prob. >0

$$
\begin{aligned}
& \# y=u \text { say } \varphi=\{1, \ldots a\} \\
& \Rightarrow P(\{1\})=P(\{2\})=\cdots=P(\{a\})=p \\
& \Rightarrow 1=P(y)=P(\{1, \ldots, n\})=P(\{1\})+\cdots+P(\{u\})=n \cdot p \\
& \Rightarrow A Z \\
& \Rightarrow 1=u \cdot p \Rightarrow P=\frac{1}{4}=P(\{i\}), 1 \leq i \leq u
\end{aligned}
$$

 card. of e

Cownting Principe
\# outcomes: tkrow 2 ar 3 dize
fint thoow a die, deterunines a stach of cores then picle a cand (of 32)
Coundrationer of experiments, sequential executions
E_{1} kas un outcomes, E2 uss u oufcomar
outcomes of ${ }^{7} E 1$ then $E 2^{a}=u \cdot u$
Outaones correspood to wenix

$$
\begin{aligned}
& (1,1), \ldots(1, m) \\
& (2,1) \\
& \vdots \\
& (m, 1) \ldots(m, u)
\end{aligned}
$$

Iu general: has ui outcoms
\Rightarrow En than $E_{2} \ldots$. then Er has u, ur

Quiz 3: Socks in a Box

$$
P(\underbrace{2 \text { socks have diff. colour }}_{\varepsilon})=\frac{\# \varepsilon}{\# \varphi}
$$

8 black, 7 white
$\rho=$ Pains of socks picked, first, then second $\rightarrow \# \rho=15 \times 14$
$\varepsilon=$ Pain with $(1 s t=\omega 12 n d=b) \cup(1 s t=51$ Ind $=\omega)$
\#そ $7 \times 8+8 \times 7$

$$
\frac{\# \varepsilon}{\# 9}=\frac{7 \cdot 8+8 \cdot 7}{15 \cdot 14}=\frac{2 \cdot 7 \cdot 8}{15 \cdot 74}=\frac{8}{15}
$$

Quit 4: How many Words?

$$
\begin{aligned}
& \text { \# Words = \#possibilies lat bit } \\
& x \neq \text { - } \quad \text { - } 2 u l \text {-. - } \\
& x \#-\cdots-32^{\text {ne }} \text { bot } \\
& \begin{array}{l}
2 \\
2 \\
2 \\
\vdots \\
i
\end{array} \\
& 2 \\
& =2^{32} / / 2^{10}=1024 \approx 1000=10^{3} \\
& =2^{30} \cdot 2^{2}=\left(2^{10}\right)^{3} \cdot 2^{2} \\
& \approx\left(10^{3}\right)^{3} \cdot 2^{2}=4,000,000,000
\end{aligned}
$$

Quirt 5: People on an Elevator
$P\left({ }^{\text {"all off }}\right.$ at same floor ")
$\varepsilon_{i}=$ "all off at flood" $\quad(i=1, \ldots, 4)$

$$
\begin{aligned}
\mathscr{S} & =\left\{\left(f_{1}, f_{2}, f_{3}, f_{4}\right) \mid f_{i} \in\{1,2,3, \varepsilon 3, i=1, \ldots, 4\}\right. \\
& =\{(1,1,1,1),(1,1,1,2), \ldots\}
\end{aligned}
$$

$\# \varphi=4^{4} \quad / /$ In general: $f=\# f l o m, p=\#$ persons

$$
\begin{aligned}
& \varepsilon_{i}=\{(i, i, i, i)\} \Rightarrow \# \xi=1 \\
& \varepsilon=\frac{f}{+} \varepsilon_{i} \Rightarrow E=E
\end{aligned}
$$

$\frac{\# \varepsilon}{\# \rho}=\frac{f^{\prime} 1}{f^{p} p^{-1}}=\frac{1}{f^{p-1}}$. Here: $\frac{\# \varepsilon}{\# \rho}=\frac{1}{4^{3}}=\frac{1}{2^{6}}$
disjoint union,
i.e., the ai are mut. disiont $=\frac{1}{64}$

Example 6 b 10 books: 4 CS, 3 Matk, 2 slat, 1 ffist Drganize so that bool. of vame susject we together: E.g., SS. Ccce. H. MMM

How many possibilites?

1) \#permutations of sabjects
2) permalation withrh sabjects

$$
\text { H Arraugenents }=4!\cdot 4!\cdot 3!2!1!
$$

$$
\begin{aligned}
& =\left(2^{3} \cdot 3\right) \cdot\left(2^{3} \cdot 3\right) \cdot\left(2^{1} \cdot 3\right) \cdot 2^{1} \\
& =2^{8} \cdot 3^{3}=256 \cdot 27
\end{aligned}
$$

$\approx 250 \cdot 28$

$$
\begin{aligned}
4! & =4 \cdot 3 \cdot 2 \\
& =2^{3} \cdot 3 \cdot 2 \\
& =2^{3} \cdot 3
\end{aligned}
$$

$$
=250 \cdot 4 \cdot 7=7 \cdot 1000=7000
$$

- Randon
\# Arruegenent, wol book uixed up arbizorily

$$
10 \cdot 9 \cdot 8 \cdots 1=10^{r}
$$ togeteer

Example 7 Course with 5 male, 3 female students, We hade an alan: all students jot different rask P ("all tevere stadents got the top curates") $=$ $\rho=$ all possible rankings, $\# \rho=8$! ε Females top Rankings:
$\frac{F}{3!} \frac{M}{5!}$

$$
\begin{aligned}
p(\varepsilon)=\frac{\# \xi}{\# \rho}=\frac{3!5!}{8!} & =\frac{3!8!}{8 \cdot 7 \cdot 6 \cdot 5!}=\frac{3!}{8 \cdot 7 \cdot 6} \\
& =\frac{1}{8 \cdot 7}=\frac{1}{56}
\end{aligned}
$$

Ex 2 Resized : The top 3 students are a raadoculy chosen set of 3 out of 8 .
We asked: What is the probabilizg theist an speafir sets chosen?
How mangy choices of 3 out of 8 are possible?
1.) choose 3 out of 8 in sequence: How many poss?

$$
8 \cdot 7 \cdot 6
$$

2.) A set of 3 can be oblecined in 3! ways

$$
\begin{array}{ll}
a, b, c & b, c, a \\
a, c, b & c, a, s \\
b, a, c & c, b, a
\end{array}
$$

In total: $\frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1}=\frac{(8 \cdot 7 \cdot 6) \cdot(5 \cdot 4 \cdot \cdots 1)}{(3 \cdot 2 \cdot 1) \cdot(5 \cdot 4 \cdots \cdots 1)}$

$$
=\frac{8!}{3!5!}=\binom{8}{3}=\binom{8}{5}
$$

Generalize: Choose σ out of n

$$
\frac{n!}{r!(u-\sigma)!}=\binom{n}{r}
$$

"ncloocer"
"binomial coefficients"
1.) Select r elements out of u: $=\binom{n}{n-r}$
2.) We get the same set r!' times

$$
\begin{aligned}
(x+y)^{n}= & \binom{4}{0} x^{n} y^{0}+\binom{4}{1} x^{n-1} y^{1}+\binom{n}{2} x^{n-2} y^{2} \\
& +\ldots
\end{aligned}
$$

Pascal's triangle:
only one
path
leading to a
pin on the rides
(1) the G. board by making a accuser of choicer of
(1) (1) going L or R, (1) which correspond to choices of x andy each code has the of patties caching to it t in the g. board

Example 9: Given 5 men, 8 woven. Randomly select 5 persons.
$P(" 2$ men, 3 women ar select" $)=$
$I=$ all possible choices of 5 out of 13

$$
\# \rho=\binom{13}{5}
$$

$\Sigma=$ selection 2 wen ot of 5 , 3 women out of 8

$$
\begin{aligned}
& \# \varepsilon=\binom{5}{2} \cdot\binom{8}{3} \\
& P(\Sigma)=\frac{\binom{5}{2} \cdot\binom{8}{3}}{\binom{13}{5} \quad} \begin{array}{l}
\begin{array}{c}
\text { \& } \\
3
\end{array} \\
\text { on hand oo. }
\end{array}
\end{aligned}
$$ notes

Example 10: Given objects 1,..., u. Select subset of size k.

$$
P(\underbrace{1}_{\mathcal{E}} \text { is in the selection })=
$$

$I=$ all subsets of size k of $\{l, \ldots, 4\}$

$$
\# \rho=\binom{u}{k}
$$

$\xi=a l$ subsets of size 4 contacting 1

$$
\begin{aligned}
& \# \sum=\binom{u-1}{k-1} \\
& \text { ide., only choose remaining } \\
& k-1 \text { out of } u-1 \\
& P(\xi)=\frac{\binom{u-1}{k-1}}{\binom{u}{k}}=\frac{(u-1)!}{\frac{k^{*}(k-k)!}{(k-1)!\frac{(n-1-(k-1))!}{(n-k)!}}=\frac{k!}{n}}
\end{aligned}
$$

1.4 Couchzorual Probatitizès

Throw two dice

$$
\begin{aligned}
& P\left(D_{1}+D_{2}=8\right)=\frac{\#(2,6),(3,5),(4,4),(5,3),(6,2)\}}{\# 9} \\
& =\frac{5}{36}
\end{aligned}
$$

Suppose, we know $D_{1}=3$.

$$
\begin{gathered}
\left(\text { Whet if } \theta_{n}=1.2\right) \\
\Rightarrow P(.)=0
\end{gathered}
$$

$$
P\left(D_{1}+D_{2}=8 \mid D_{1}=3\right)=?
$$

condition
New sample space $\rho^{\prime}=\{(3,1),(3,2) \ldots,(3,6)\}$

$$
\begin{aligned}
& \not \# \rho^{\prime}=6 \\
& \varepsilon^{\prime}=\{(3,5)\} \Rightarrow \xi^{\prime}=1 \\
& P\left(D_{1}+D_{2}=8\left(0_{1}=3\right)=\frac{\# \varepsilon^{\prime}}{\# \rho^{\prime}}=\frac{1}{6}\right.
\end{aligned}
$$

Definition 11: Events $\varepsilon, F, P(F)>0$

$$
\frac{P(\xi \cap f)}{P(F)}
$$

Note: $P(. \mid F)$ is again a probability on 9

$$
\begin{aligned}
E_{g}: & P\left(\varepsilon_{1}+\cdots+\varepsilon_{k} \mid \mathcal{F}\right) \\
= & P\left(\varepsilon_{1}|\mathcal{F}|+\cdots+P\left(\varepsilon_{k} \mid \mathcal{F}\right)\right. \text { if }
\end{aligned}
$$

Wow, only outcomes n I are considered possible s: are munnolly ousjoint

$$
\begin{aligned}
& \Sigma^{\prime}=\varepsilon \cap f \\
& y_{0} \\
& \rho^{\prime}=F
\end{aligned}
$$

Normalize P to $P^{\prime}=P(\cdot \mid F)$, sack that $P^{\prime}\left(\rho^{\prime}\right)=1$

$$
P^{\prime}(\xi)=P\left(\xi(F)=\frac{P(\xi \cap F)}{P(F)}\right.
$$

Subjective (= Bayesian) view of probabilities
We have seen the subj. view of conc prob.
Frequatist view: $\quad n$ experiments

$$
\begin{aligned}
\mathcal{F} & \simeq n \cdot P(F) \quad \text { many times } \\
\xi \mathcal{F} & \approx n \cdot P(\xi \mathcal{F}) \quad \text { many times }
\end{aligned}
$$

lIgure outcomes not f.
Among the n. $P(\mathcal{F})$ many \mathcal{F}-outcomes, there are $n P(E \mathcal{F})$ many $\varepsilon \mathcal{F}$-outcomes

$$
\Rightarrow P(\xi \mid \mathcal{F})=\frac{n \cdot P(\xi \mathcal{F})}{n \cdot P(\tilde{F})}=\frac{P(\xi \mathcal{F})}{P(\tilde{F})}
$$

Example 1L Box with 32 transistors:
20 working, 8 partly working, 4 deficient
Exp: Choose 1 transistor,
suppose it does not fail. What is the prob. that it is working?
Three events: W, P, D (pick a working,... transistor)

$$
\begin{aligned}
& P(W \mid \bar{D})=\frac{P(W \bar{D})}{P(\bar{D})}=\frac{P(W)}{P(W \cup P)}=\frac{\frac{20}{32}}{\frac{28}{32}}=\frac{20}{28}=\frac{5}{7} \\
& P(E \mid F)=\frac{P(\xi F)}{P(F)}
\end{aligned}
$$

Quiz 7: Tossing Cons

$$
\begin{aligned}
& P(2 \text { heads } \mid \geq 1 \text { head })= \\
& =\frac{P(\xi \mathcal{F})}{P(F)}=\frac{P(2 \text { heads } 1 \geq 1 \text { head })}{P(\geq 1 \text { head })} \\
& \rho=\left\{\begin{array}{l}
(H, H) \\
(H, \tau), \\
(T, H)
\end{array}\right) \mathcal{F} \\
& \text { (} T, \bar{\tau} \text {) }\} \\
& =\frac{P(\{(H, H)\})}{P(\{(H, H),(i, H),(H, T)\})}=\frac{\frac{1}{4}}{\frac{3}{4}}=\frac{1}{3}
\end{aligned}
$$

Quiz 8: Champions reaching the fine

$$
\begin{aligned}
& P(\text { Champions })=P(\mathcal{F} W)=P(w \mid \mathcal{F}) P(F) \\
& P(F)=.2 \\
& P(W \mid F)=.5 \\
& P(W \mid F)=\frac{P(W F)}{P(F)} \\
& \Rightarrow P(W / F) P(F)=P(W F)
\end{aligned}
$$

1.5 Bayes' Formula
ε, F events $=0 \quad \xi=\varepsilon_{\mathcal{F}}{ }^{J} \bar{F}$

$$
\begin{aligned}
\Rightarrow P(\xi) & =P(\xi \mathcal{F}) \perp P(\xi \mathcal{F}) \\
& =P(\xi \mid \mathcal{F}) P(\mathcal{F})+P(\xi \mid \bar{f}) P(\bar{F})
\end{aligned}
$$

Here: $P(\xi)$ can be computed by conditioning on some \mathcal{F}
special case of the law of total probability (LOTP)

况
Example 15 Insurance company: People are risk taker (30%) or not. Every year, 40% of rok takers have an accident, only 20% of nourish takers. What is $P(A)$?

$$
\begin{aligned}
P(\mathcal{A}) & =P(A \mid Q) P(R)+P(A / \bar{X}) P(\bar{R}) \\
& =.4 \times .3+.2 \times .7=.12+.14=0.26
\end{aligned}
$$

updating beliefs in the presence of new information
Example 16: Suppose, a client has an accident. What is the prob. this was a risk taker?

$$
P(x \mid A)=\frac{P(R A)}{P(A)}=\frac{P(A \mid R) P(\not))}{P(t)}
$$

Remember:

$$
\begin{aligned}
P(A \mid R)=\frac{P(A R)}{P(X)}=\frac{P(R A)}{P(R)} & =\frac{.4 \times .3}{0.26} \\
\Rightarrow P(X A)=P(A \mid X) P(X) & =\frac{.12}{.26}=\frac{12}{26}=\frac{6}{13} \\
& =0.46
\end{aligned}
$$

Bayes' Formula

$$
P(F \mid \xi)=\frac{P(\xi \mid F) P(F)}{P(\xi)}
$$

Quiz 9: Testing for a Disease
D person has disease I test is positive

$$
\begin{aligned}
& P(J / D)=\frac{99}{100} \quad P(J / \bar{D})=\frac{1}{100}=\frac{99 \cdot 1}{100 \cdot 100}=\frac{1}{100} \\
& P(D / J)=\frac{1}{2 \cdot 99} \\
& \begin{array}{l}
P(J)=P(J / D) P(D)+P(J / \bar{D}) P(\bar{D})
\end{array}=\frac{1}{2} \\
& =\frac{99}{100} \cdot \frac{1}{100}+\frac{100}{100} \cdot \frac{99}{100} \quad \text { true posties }
\end{aligned}
$$

General Law of Total Probability (LOTP)
Let $F_{1}, \ldots, \mathcal{F}_{n}$ be a partition of ρ, ie.

$$
\begin{aligned}
& \text { - } \mathcal{F}_{i} \cap \mathcal{F}_{j}=\phi, \quad i \neq j \\
& \text { - } \bigcup_{i=1}^{n} F_{i}=\mathcal{F}_{1} \cup \ldots \cup \mathcal{F}_{n}=\mathcal{J} \\
& \text { Note: } \\
& \sum_{i=1}^{n} P\left(F_{i}\right)=1 \\
& \varepsilon \in \rho \text { event } \Rightarrow \varepsilon=\biguplus_{i=1}^{n} \xi F_{i} \\
& \Rightarrow P(\varepsilon)=\sum_{i=1}^{n} P\left(\varepsilon \mathcal{F}_{i}\right)=\sum_{i=1}^{n} P\left(\varepsilon\left(\hat{f}_{i}\right) P\left(f_{i}\right)\right.
\end{aligned}
$$

Quiz 11: Marbles
Lotp: What are ε and the F_{i} ?
$\varepsilon=$ Marble draws is red
$F_{i}=$ The i-th bag is chosen

$$
\begin{array}{r}
P(\xi)=P\left(\xi\left(F_{1}\right) P\left(F_{1}\right)+P\left(\xi\left(F_{2}\right) P\left(F_{2}\right)+P\left(\xi\left(F_{3}\right) P\left(F_{3}\right)\right.\right.\right. \\
P\left(F_{1}\right)=P\left(F_{2}\right)=P\left(F_{3}\right)=\frac{1}{3} \\
P\left(\xi \mid F_{1}\right)=\frac{80}{100} \quad P\left(\xi\left(F_{2}\right)=\frac{55}{100} P\left(\xi / F_{3}\right)=\frac{45}{100}\right. \\
\Rightarrow P(\xi)=\frac{1}{3} \frac{80+55+45}{100}=\frac{1}{3} \frac{160}{100}=\frac{60}{100}
\end{array}
$$

$\left(F_{i}\right)_{i=1}^{n}$ partition of $\rho, \quad \xi$ event
$P(F ; \mid \varepsilon)=$.

$$
\begin{aligned}
P\left(F_{i} \mid \varepsilon\right) & =\frac{P\left(F_{i} \xi\right)}{P(\xi)}=\frac{P\left(\xi F_{i}\right)}{P(\xi)} \\
& =\frac{P\left(\xi \mid F_{i}\right) P\left(F_{i}\right)}{P(\xi)} \\
& =\frac{P\left(\xi \mid F_{i}\right) P\left(F_{i}\right)}{\sum_{i=1}^{n} P\left(\xi \mid F_{i}\right) P\left(F_{i}\right)}
\end{aligned}
$$

Generalized Bayer' Formulae

Quiz 10: Bivid - 20 Diaguosis
B persan has Bivid
I test is positive
Why? positiver ${ }^{2}$

luteresting: $P(B / T)=$?

$$
\begin{aligned}
& P(J / B)=\frac{99}{100} \\
& P(\bar{J} / \bar{B})=\frac{99}{100} \Rightarrow P(\Psi / \bar{B})=\frac{1}{100} \\
& P(B)=\frac{10}{100} \\
& P(H \mid J)=\frac{P(T \mid B)}{P(J)} \frac{P(X)}{\frac{99}{100} \cdot \frac{10}{100}} \frac{99}{100} \frac{10}{100}+\frac{1}{100} \cdot \frac{90}{100} \\
& \begin{aligned}
P(J) & =P(J \mid B) P(B) \quad=\frac{99}{99+9}=\frac{97}{108}=91.67 \\
& \approx P(J \mid \bar{B}) \cdot P(\bar{B}) \quad
\end{aligned} \\
& \begin{aligned}
P(J) & =P(J \mid B) P(B)=\frac{99}{99+9}=\frac{97}{108}=91.67 \\
& \neq P(J \mid \bar{B}) \cdot P(\bar{B}) \quad
\end{aligned}
\end{aligned}
$$

1.6 Independent Events

Example: Consider a deck of French cards
$\varepsilon=$ draw a red card
$\hat{f}=$ draw an ace
$P(\varepsilon)=\frac{1}{2}$,

$$
\begin{aligned}
& P(F)=\frac{4}{52}=\frac{1}{13} \\
& P(F \mid \xi)=\frac{2^{\text {r }} \text { odes }}{26} \\
& \text { \#red cords }
\end{aligned}
$$

Intuition: Knowing F doesn't L_{e} ll us anything about E E. Fave independent of ε
(n general, $P(\xi \mid F) \neq P(\xi)$ posterior prob. of ε
Definition: ξ, Finclependent $\quad P(\xi(F)=P(\xi)$

Note: the definition is symmetric

$$
\begin{aligned}
& P\left(\xi(F)=P(\xi) \Leftrightarrow P(\xi)=\frac{P(\xi \mathcal{F})}{P(F)}\right. \\
& \Leftrightarrow P(\xi) P(F)=P(\xi F)
\end{aligned}
$$

The first definition assumes that $P(F) \neq 0$ Alternative:
ξ, \mathcal{F} iudep if $P(\xi \hat{f})=P(\xi) \cdot P(\hat{f})$

$$
\begin{aligned}
P(\xi) P(F)=P(\xi \mathcal{F}) & \Rightarrow P(F)=\frac{P(\xi \mathcal{F})}{P(\xi)} \\
& =\frac{P(F \xi)}{P(\xi)}=P(F(\xi)
\end{aligned}
$$

Quiz: Dice and rude pendence

$$
\begin{aligned}
& \mathcal{Z}=D_{1}+D_{2}=7^{r} \\
& \mathcal{F}=" D_{1}+D_{2}=8^{"} \\
& \mathcal{g}=" D_{1}=3 "
\end{aligned}
$$

$$
\begin{aligned}
& =\{(2,6),(3,5),(4,4),(5,3)(3,2)\} \\
& \Rightarrow \forall F=5 \\
& g=\{(3,1), \ldots,(3,6)\} \\
& \Rightarrow \# g=6
\end{aligned}
$$

E ind $\mathcal{F}: P(\xi \mathcal{F})=0 \neq \frac{1}{6} \cdot \frac{5}{36}=P(\xi) P(\xi)$
ξ ind $g: P(\xi g)=\frac{1}{36}=\frac{1}{0} \cdot \frac{1}{6}=P(\xi) P(\xi)$ Yes!
F_{F} ind $g: P(F G)=\frac{1}{36} \neq \frac{5}{36} \cdot \frac{1}{6}=P(F) P(G)$ No!

$$
\begin{aligned}
& P(\xi)=\frac{6}{36}=\frac{1}{6} \\
& P(\mathcal{F})=\frac{5}{36} \\
& P(\xi)=\frac{6}{36}=\frac{1}{6}
\end{aligned}
$$

$$
\begin{aligned}
& P(\xi F)=0 \\
& P(\xi g)=\frac{1}{36} \\
& P(F g)=\frac{1}{36}
\end{aligned}
$$

Example: Consider a deck of French cards
$\varepsilon=$ draw a red card
$\hat{\mathcal{F}}=$ draw an ace

$$
\begin{array}{ll}
P(\varepsilon)=\frac{1}{2}, & P(\xi / \mathcal{F})=\frac{1}{2} \\
P(F)=\frac{1}{13}, & P(F / \xi)=\frac{1}{13}
\end{array}
$$

Symmetry:
We observe as well:

$$
\begin{aligned}
& P(\bar{\xi} / \mathcal{F})=\frac{1}{2} \\
& P(\bar{F} / \xi)=\frac{12}{13} \\
& P(\bar{\xi})=\frac{1}{2} \\
& P(\bar{F})=\frac{12}{13}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{P(\xi \mathcal{F})=P(\xi) P(F)} \\
& \Leftrightarrow P(\xi \mid \mathcal{F})=P(\xi) \\
& \Leftrightarrow P(F \mid \Sigma)=P(F) \\
& \text { if } P(\xi) \neq O \neq P(F)
\end{aligned}
$$

Definition of independence of events

Proposition $20 \quad \xi$, Finde pendent \Rightarrow 手, \bar{F} independent
Proof: Show $P(\xi \overline{\mathcal{F}})=P(\xi) P(\bar{\gamma})$

$$
\begin{aligned}
& P(\xi)=P(\varepsilon \mathcal{F} \cup \xi \bar{F})=P(\xi \mathcal{F})+P(\xi \bar{F}) \\
&=P(\xi) \cdot P(\mathcal{F})+P(\xi \bar{F}) \\
& \Rightarrow P(\xi)-P(\xi) \cdot P(\bar{F})=P(\xi \bar{\xi}) \\
& \|(1-P(F)) P(\xi)=P(\overline{\mathcal{F}}) \cdot P(\xi) \\
& \varepsilon, F \text { ind. } \Rightarrow \bar{\xi}, \bar{f} \text { rad. }
\end{aligned}
$$

Independence is inherited by complements

Consider E ind of $\mathcal{F}_{1} \nRightarrow E$ ind $F \cap G$ ξ ind of G

Example: Trow two dice

$$
\begin{aligned}
& \xi={ }^{n} 0_{1}+D_{2}=7^{\prime \prime} \quad \mathcal{F}={ }^{u} D_{1}=1 " \quad \mathcal{V}=" D_{2}=6 " \\
& P(\xi)=\frac{1}{6} \quad P(F)=\frac{1}{6} \quad P(G)=\frac{1}{6} \\
& P(\xi \mathcal{F})=\frac{1}{36} \quad P(\xi G)=\frac{1}{36} \quad P(\mathcal{F} G)=\frac{1}{36} \\
& =\xi, \mathcal{F} \text { ind. } \quad \mathcal{E}, G \text { ind }
\end{aligned}
$$

What about ind of ξ and $F \cap G=F \mathcal{G}$?

$$
P(\xi) P(F G)=\frac{1}{6} \frac{1}{36} \neq \frac{1}{36}=P(\xi F \mathcal{F})=P(\xi(\tilde{F}))
$$

$=\sum$ and Fy are not, ind.

Let ξ ind of \mathcal{F}, ξ ind of \mathcal{G}. Can we conclude that ξ ind of $\mathcal{F}(=F \sim G)$?
Example: Throw two dice!

$$
\begin{array}{lll}
\xi=" D_{1}+D_{2}=7^{"} & \mathcal{F}=D_{1}=1 " & G=D_{2}=\sigma^{"} \\
P(\varepsilon)=\frac{1}{6} & P(F)=\frac{1}{6} & P(g)=\frac{1}{6} \\
P(\xi \mathcal{F})=\frac{1}{36} & P(\xi G)=\frac{1}{36} & P(F G)=\frac{1}{36} \\
\Rightarrow q_{1} F \text { ind. } & \Rightarrow \xi, g \text { ind. } &
\end{array}
$$

What about the independence of ε and $F g$? Compare $P(\xi(F g))$ and $P(\xi) \cdot P(F g)$!

$$
\begin{aligned}
& P(\xi(F g))=P(\xi F g)=\frac{1}{36} \\
& P(\xi) \cdot P(F g)=\frac{1}{6} \cdot \frac{1}{36}
\end{aligned}
$$

Since $\frac{1}{36} \neq \frac{1}{6} \cdot \frac{1}{36}$, \& and Fig are not independent

Definition 22: E, F.G are codependent if

- E,F and ε, g and f, g are rad. (pairs. ind.)

$$
\text { - } P(\Sigma F G)=P(\xi) P(F) P(G)
$$

Now, ε and $F G$ are fud.

$$
\begin{aligned}
& P(\xi \cdot(\mathcal{F}))=P(\xi \mathcal{F} G)=P(\xi) P(\tilde{F}) P(g) \\
&=P(\xi) P(F G) \text { ind. } \\
& \text { of } \\
& F \cdot G
\end{aligned}
$$

Remark: ξ, F, G ind $\Rightarrow \xi$ and (FטG) ind.

$$
\begin{aligned}
& P(\xi(F \cup G))=P(\xi \mathcal{F} \cup \xi \mathcal{G}) \\
&=P(\xi \mathcal{F})+P(\xi G)-P(\xi \mathcal{F} G)=P(F G) \\
&=P(\xi) P(F)+P(\xi) P(G)-P(\xi) P(F) P(G) \\
&=P(\xi)(P(F)+P(G)-P(F G)) \\
&=P(\xi) P(F \cup G)
\end{aligned}
$$

Generalized ξ_{1}, \ldots, ξ_{n} are independent if Definition for every subset of F_{1}, \ldots, F_{m} :

$$
P\left(F_{1} \ldots F_{m}\right)=P\left(F_{1}\right) \ldots P\left(F_{u}\right)
$$

Examples: -Sequences of experineerets; E_{i} refers to isth execution of experiment
E.g.i Rolling die
sequences of disease tests:
Intuited for one rest bering positive for people w/ and wo disease:

$$
\begin{array}{ll}
P(J \mid D)=.99 & P(\bar{J} \mid \bar{D})=.99 \\
& \frac{P(J \mid \bar{D})=.01}{\text { prob. of false positives }}
\end{array}
$$

- Sequences of disease tests:
lutuiten for one rest leering paritive for people w/ and wo disease:

$$
P(J \mid D)=.99
$$

$$
{ }_{\text {seusitarity }}^{8}
$$

$$
\begin{aligned}
& P(\bar{J} \mid \bar{D})=.99 \\
& P(J \mid \bar{D})=.01
\end{aligned}
$$

prob. of false positives

- Let J_{1}, J_{2} be two applications of test to same person wo pos. outcome

$$
P\left(\tau_{1} \tau_{2}(D) \quad \frac{99}{100} \cdot \frac{99}{100} \approx .98\right.
$$ sensitionity does nob

cold. indepen $\sim \sim \stackrel{?}{=} P\left(J_{1} / D\right) \cdot P\left(J_{2}^{\prime \prime} / \mathcal{P}\right)$ do much down deuce

$$
\begin{aligned}
& P\left(J_{1} J_{2}(\bar{D})\left(=P\left(\left(J_{1} \cap J_{2}\right) \mid \bar{D}\right)\right)\right. \\
& \stackrel{?!}{=} P\left(J _ { 1 } (\overline { D }) \cdot P \left(J_{2}(\bar{D})=\frac{1}{100} \cdot \frac{1}{100}=\frac{1}{107}\right.\right.
\end{aligned}
$$

probability for folic pasanees is small

- Sequences of disease tests

Example probabzities for a test being positive for people w/ and who disease

$$
P(J \mid D)=.99 \mathrm{~J}
$$

$$
\begin{aligned}
P(\bar{J} \mid \bar{D}) & =.99^{C} \\
\Leftrightarrow P(J \mid D) & =.01
\end{aligned}
$$

sensitivity
If $P(D)$ is low (e.g., 1%), then we cannot rely on the test because there are as many true positive as false positive test results.

What can we do?
Idea: Apply the test twice! First J_{1}, then \mathcal{J}_{2}. But: Need to ensure that probabilities multiply!
That is

$$
\begin{aligned}
P\left(J_{1} J_{2} \mid D\right) & =P\left(J _ { 1 } (D) P \left(J_{2}(D)\right.\right. \\
& =\frac{99}{100} \cdot \frac{99}{100}=\frac{9801}{10000} \approx 98 \%
\end{aligned}
$$

This property of J_{1}, J_{2}, D is spelt out as " J_{1} and J_{2} are conditionally independent given D " It is independence of τ_{1}, J_{2} with regard to the probability measure

$$
P(-1 D)
$$

remember that for every probability PC.) on ρ also P(.1D) is a probability on ρ.

Assume that $\mathcal{J}_{1}, \mathcal{J}_{2}$ are also independent given \bar{D}.
Then

$$
\begin{aligned}
P\left(J_{1}, J_{2} \mid \bar{D}\right)=P\left(J_{1} \mid \bar{D}\right) \cdot P\left(J_{2}(\bar{D}) \quad \begin{array}{l}
\text { numbers } \\
\text { from } \\
\text { our example }
\end{array}\right. \\
=\frac{1}{100} \cdot \frac{1}{100}=\frac{1}{1000}
\end{aligned}
$$

This shows that the probability of false positives has been sharply reduced: The relationship between false and true positives now is

A Bayesian analysis of what can be concluded from the other test results ($J_{1} \bar{J}_{2}, \bar{J}_{1} \Gamma_{2}$ and $\bar{\tau}_{1} \bar{J}_{2}$) will be part of the assignment.

What is $P\left(\tau_{1} \overline{T_{2}} \mid \infty\right)$?

$$
\begin{aligned}
=P\left(J _ { 1 } (D) P \left(\overline{J_{2}}(D)\right.\right. & =\frac{90}{100} \cdot \frac{1}{100}=\frac{99}{10^{4}} \\
P\left(J_{1} \bar{J}_{2} \cup \bar{J}_{1} J_{2}(D)\right. & \approx \frac{200}{10.000}=\frac{2}{100}
\end{aligned}
$$

$$
\begin{aligned}
& P\left(D / J_{1}, \overline{J_{2}} \cup \overline{J_{1}} J_{2}\right) \\
& =\frac{P\left(\tau_{1} \overline{\sigma_{2}} \cup \overline{\tau_{1}} \tilde{\pi}_{2} \mid D\right)}{P\left(\tau_{1} \overline{\sigma_{2}} \cup \bar{\pi}_{1} \tilde{J}_{2}\right)}=\frac{2 P(D)}{2 P\left(\tilde{J}_{1} \overline{\sigma_{2}}(D) \cdot P(D)\right.}
\end{aligned}
$$

$$
=\frac{99}{10^{4}} \cdot \frac{1}{100}+\frac{94}{10^{4}} \frac{99}{100}
$$

$$
=\frac{z \cdot \frac{99}{10^{4}} \cdot \frac{1}{100}}{2 \cdot \frac{99+99^{2}}{10^{6}}}=\frac{99}{(1+99) \cdot 99}=\frac{1}{100}
$$

What is $P\left(\sigma_{1} \overline{\mathcal{F}_{2}} \mid \bar{D}\right)$?

$$
\begin{aligned}
=P\left(J_{1} \mid \bar{D}\right) P\left(\overline{J_{2}}(\bar{D})=\frac{1}{100} \cdot \frac{99}{100}=\frac{99}{10^{4}}\right. \\
P\left(\tilde{J}_{1} \overline{J_{2}} \cup \bar{J}_{1} J_{2}(\bar{D}) \approx \frac{200}{10.000}=\frac{2}{100}\right.
\end{aligned}
$$

$$
\begin{aligned}
& P\left(\bar{D} / J_{1}, \overline{J_{2}} \cup \overline{J_{n}} J_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P\left(J_{1} \overline{x_{0}}\right)=P\left(T_{1} \overline{r_{1}}(D) \cdot P(D)+P\left(r_{1} \tilde{r}_{2}(\bar{d}) P(\bar{d})\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{99}{10^{4}} \cdot \frac{1}{100}+\frac{99}{10^{4}} \cdot \frac{99}{100} \\
& =\frac{2 \cdot \frac{99}{10^{9}} \cdot \frac{99}{100}}{2 \cdot \frac{99+99^{2}}{10^{6}}}=\frac{99^{2}}{(1+99) \cdot 92}=\frac{99}{100}
\end{aligned}
$$

Example 23

components are ind.
work with p_{i} for comp i

System works if ≥ 1 comp. works红 = "system works", $F_{i}="$ comp i works" $\Rightarrow P(\xi)=$?
$\bar{\varepsilon}=$ "system doesn't was' if no comp. works
if \bar{J}_{1} and $\bar{J}_{2} \ldots \bar{F}_{4}$
Wore: (Fin) ind \Rightarrow (\bar{F}_{i}) ind

$$
\begin{aligned}
P(\xi) & =1-P(\bar{\xi})=1-P\left(\bar{F}_{1} \cdots \overline{\mathcal{F}}_{n}\right)=1-P\left(\bar{F}_{1}\right) \cdot \cdots P\left(\bar{F}_{n}\right) \\
& =1-\prod_{i=1}^{n} P\left(\bar{F}_{i}\right)=1-\prod_{i=1}^{n}\left(1-P\left(\bar{F}_{i}\right)\right)=1-\prod_{i=1}^{n}\left(1-p_{i}\right)
\end{aligned}
$$

