
Master Informatique 																																		1Data Structures and Algorithms

Chapter	8 Graphs

Data Structures and Algorithms

 Chapter 8

Algorithms for Weighted Graphs

Werner Nutt

Master Informatique 																																		2Data Structures and Algorithms

Chapter	8 Graphs

Acknowledgments
• The course follows the book “Introduction to Algorithms‘”,

by Cormen, Leiserson, Rivest and Stein, MIT Press
[CLRST]. Many examples displayed in these slides are
taken from their book.

• These slides are based on those developed by
Michael Böhlen for this course.

(See http://www.inf.unibz.it/dis/teaching/DSA/)

• The slides also include a number of additions made by
Roberto Sebastiani and Kurt Ranalter when they taught
later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)

Master Informatique 																																		3Data Structures and Algorithms

Chapter	8 Graphs

DSA, Chapter 8: Overview

1. Weighted Graphs
2. Shortest Paths

– Dijkstra’s algorithm
3. Minimum Spanning Trees

– Greedy Choice Theorem
– Prim’s algorithm

Master Informatique 																																		4Data Structures and Algorithms

Chapter	8 Graphs

DSA, Chapter 8: Overview

1. Weighted Graphs
2. Shortest Paths

– Dijkstra’s algorithm
3. Minimum Spanning Trees

– Greedy Choice Theorem
– Prim’s algorithm

Master Informatique 																																		5Data Structures and Algorithms

Chapter	8 Graphs

Weighted Graphs
• May be directed or undirected graphs G = (V,E)
• Have a weight function

w : E - R
which assigns cost or length or other values to edges

6

14 7

3 10

5
12

9

15
8

10

5

1

2 3 9
4

6
7

2

Master Informatique 																																		6Data Structures and Algorithms

Chapter	8 Graphs

DSA, Chapter 8: Overview

1. Weighted Graphs
2. Shortest Paths

– Dijkstra’s algorithm
3. Minimum Spanning Trees

– Greedy Choice Theorem
– Prim’s algorithm

Master Informatique 																																		7Data Structures and Algorithms

Chapter	8 Graphs

Shortest Path
• We generalize distance to the weighted setting
• We consider a digraph G = (V,E) with weight function

w: E - R (assigning real values to edges)
• The weight of path p = v1 - v2 - … - vk is

• Shortest path = a path of minimum weight (cost)
• Applications

– static/dynamic network routing
– robot motion planning
– map/route generation in traffic

1

1
1

() (,)
k

i i
i

w p w v v
)

(
*

*5

Master Informatique 																																		8Data Structures and Algorithms

Chapter	8 Graphs

Shortest-Path Problems
• Single-source. Find a shortest path from a given source

(vertex s) to each of the vertices.

• Single-pair. Given two vertices, find a shortest path
between them. Solution to single-source problem solves
this problem efficiently, too.

• All-pairs. Find shortest-paths for every pair of vertices.
Dynamic programming algorithm.

• Unweighted shortest-paths – BFS.

Master Informatique 																																		9Data Structures and Algorithms

Chapter	8 Graphs

Optimal Substructure
Theorem: Subpaths of shortest paths are shortest paths.

Proof:
If some subpath were not the shortest path,
one could substitute the shorter subpath
and create a shorter total path.

Master Informatique 																																		10Data Structures and Algorithms

Chapter	8 Graphs

Negative Weights and Cycles
Observations:
• Negative edges are OK,

as long as there are no negative weight cycles
(otherwise, paths with arbitrary small “lengths”
would be possible).

• Shortest-paths can have no cycles
(otherwise we could improve them by removing cycles).

Any shortest path in graph G can be no longer than
n – 1 edges, where n is the number of vertices.

Master Informatique 																																		11Data Structures and Algorithms

Chapter	8 Graphs

Shortest Path Tree
• The result of the algorithms is a shortest path tree (SPT).

For each vertex v, it
– records a shortest path from the start vertex s to v;
– v.pred is the predecessor of v on this shortest path
– v.dist is the shortest path length from s to v

• Note: SPT is different from minimum spanning tree
(MST)!

2

5

2

44 5

2 2

5 5
SPT MST

Master Informatique 																																		12Data Structures and Algorithms

Chapter	8 Graphs

Relaxation
• For each vertex v in the graph, we maintain v.dist, the

estimate of the shortest path from s. It is initialized to
 , at the start.

• Relaxing an edge (u,v) means testing whether we can
improve the shortest path to v found so far by going
through u.

5
u v

vu

2

2

9

5 7

Relax(u,v)

5
u v

vu

2

2

6

5 6

Relax(u,v)

Relax (u,v)
if v.dist > u.dist + w(u,v) then
 v.dist := u.dist + w(u,v)
 v.pred := u

Master Informatique 																																		13Data Structures and Algorithms

Chapter	8 Graphs

Dijkstra's Algorithm
• Assumption: non-negative edge weights
• Greedy, similar to Prim's algorithm for MST
• Like breadth-first search

 (if all weights = 1, one can simply use BFS)
• Use Q, a priority queue with keys v.dist

(BFS used FIFO queue, here we use a PQ,
which is re-organized whenever some dist decreases)

• Basic idea
– maintain a set S of solved vertices
– at each step, select a "closest" vertex u,

add it to S, and
relax all edges from u

Master Informatique 																																		14Data Structures and Algorithms

Chapter	8 Graphs

Priority Queues
• A priority queue maintains a set S of elements,

each with an associated key value.

• We need a PQ to support the following operations
– init(VertexSet S)
– Vertex extractMin()
– modifyKey(Vertex v, Key k)

• To choose how to implement a PQ, we need to count
how many times these operations are performed.

Master Informatique 																																		15Data Structures and Algorithms

Chapter	8 Graphs

Dijkstra’s Algorithm: Pseudo Code
Input: Graph G, start vertex s

Dijkstra(G,s) do
01 for u 2 G.V
02 u.dist := ,
03 u.pred := NULL

04 s.dist := 0

05 Q := new PriorityQueue

06 Q.init(G.V) // initialize priority queue Q

07 while not Q.isEmpty() do

08 u := Q.extractMin()

09 for v 2 u.adj do
10 if v in Q and u.dist+w(u,v) < v.dist

11 then Q.modifyKey(v,u.dist+w(u,v))

12 v.pred := u

relax
edges

initialize
graph

Master Informatique 																																		16Data Structures and Algorithms

Chapter	8 Graphs

Dijkstra’s Algorithm: Example/1

10 ,

5 ,

0s

u v

yx

10

5

1

2 3 9
4

6
7

2

, ,

, ,

0s

u v

yx

10

5

1

2 3 9
4

6
7

2

Dijkstra(G,s)

01 for u 2 G.V do

02 u.dist := ,

03 u.pred := NULL

04 s.dist := 0

05 Q := new PriorityQueue

06 Q.init(G.V)

07 while not Q.isEmpty() do

08 u := Q.extractMin()

09 for v 2 u.adj do

10 if v in Q and u.dist+w(u,v) < v.dist

11 then Q.modifyKey(v,u.dist+w(u,v))

12 v.pred := u

Master Informatique 																																		17Data Structures and Algorithms

Chapter	8 Graphs

Dijkstra’s Algorithm: Example/2

8 14

5 7

0s

u v

yx

10

5

1

2 3 9
4

6
7

2

8 13

5 7

0s

u v

yx

10

5

1

2 3 9
4

6
7

2

Dijkstra(G,s)

01 for u 2 G.V do

02 u.dist := ,

03 u.pred := NULL

04 s.dist := 0

05 Q := new PriorityQueue

06 Q.init(G.V)

07 while not Q.isEmpty() do

08 u := Q.extractMin()

09 for v 2 u.adj do

10 if v in Q and u.dist+w(u,v) < v.dist

11 then Q.modifyKey(v,u.dist+w(u,v))

12 v.pred := u

Master Informatique 																																		18Data Structures and Algorithms

Chapter	8 Graphs

Dijkstra’s Algorithm: Example/3

8 9

5 7

0s

u v

yx

10

5

1

2 3 9
4

6
7

2

8 9

5 7

0s

u v

yx

10

5

1

2 3 9
4

6
7

2

Dijkstra(G,s)

01 for u 2 G.V do

02 u.dist := ,

03 u.pred := NULL

04 s.dist := 0

05 Q := new PriorityQueue

06 Q.init(G.V)

07 while not Q.isEmpty() do

08 u := Q.extractMin()

09 for v 2 u.adj do

10 if v in Q and u.dist+w(u,v) < v.dist

11 then Q.modifyKey(v,u.dist+w(u,v))

12 v.pred := u

Master Informatique 																																		19Data Structures and Algorithms

Chapter	8 Graphs

Notation
For any nodes u, v in G = (V,E), we define

 δ(u,v) = minimal length of a path from u to v

We call δ(u,v) the distance from u to v

Master Informatique 																																		20Data Structures and Algorithms

Chapter	8 Graphs

Dijkstra’s Algorithm: Correctness/1
• We prove that whenever u is added to the set S of

solved vertices, then u.dist = δ(s,u), i.e., dist is minimum.
• Proof (by contradiction)

– Initially 'v: v.dist . δ(s,v)
– Let u be the first vertex such that there is a shorter

path than u.dist, i.e., u.dist + δ(s,u)
– We will show that this assumption leads to a

contradiction

Master Informatique 																																		21Data Structures and Algorithms

Chapter	8 Graphs

Dijkstra’s Algorithm: Correctness/2
• Let y be the first vertex in V \ S on the actual shortest

path from s to u, then it must be that y.dist = δ(s,y)
because
– x.dist is set correctly for y's predecessor x2S on the

shortest path (by choice of u as the first vertex for
which dist is set incorrectly)

– when the algorithm inserted x into S, it relaxed the
edge (x,y), setting y.dist to the correct value

Master Informatique 																																		22Data Structures and Algorithms

Chapter	8 Graphs

Dijkstra’s Algorithm: Correctness/3

• But u.dist > y.dist 4 algorithm would have chosen y
(from the PQ) to process next, not u
4 contradiction

• Thus, u.dist = δ(s,u) at time of insertion of u into S, and
Dijkstra's algorithm is correct

u.dist > δ(s,u) initial assumption
 = δ(s,y) + δ(y,u) optimal substructure
 = y.dist + δ(y,u) correctness of y.dist
 ≥ y.dist no negative weights

Master Informatique 																																		23Data Structures and Algorithms

Chapter	8 Graphs

Implementation Issues
We highlight the operations on the priority queue

Dijkstra(G,s) do
01 for u 2 G.V
02 u.dist := ,
03 u.pred := NULL

04 s.dist := 0

05 Q := new PriorityQueue

06 Q.init(G.V) // initialize priority queue Q

07 while not Q.isEmpty() do

08 u := Q.extractMin()

09 for v 2 u.adj do
10 if v in Q and u.dist+w(u,v) < v.dist

11 then Q.modifyKey(v,u.dist+w(u,v))

12 v.pred := u

relax
edges

initialize
graph

Master Informatique 																																		24Data Structures and Algorithms

Chapter	8 Graphs

Priotity Queue Operations
We can implement priority queues as
• simple arrays
• heaps.

In both cases,
• initializing takes time O(n)
• emptyness checks take time O(1)

However, the running times differ for
• ExtractMax()
• ModifyKey

Master Informatique 																																		25Data Structures and Algorithms

Chapter	8 Graphs

Dijkstra’s Algorithm: Running Time
• Extract-Min executed |V| times
• Modify-Key executed |E| times
• Time = |V| x TExtract-Min + |E| x TModify-Key

• T depends on implementation of Q

O(|E| log |V |)O(log |V |)O(log |V |)heap
O(|V|2)O(1)O(|V |)array
TotalT(Modify-Key)T(Extract-Min) Q

Master Informatique 																																		26Data Structures and Algorithms

Chapter	8 Graphs

DSA, Chapter 8: Overview

1. Weighted Graphs
2. Shortest Paths

– Dijkstra’s algorithm
3. Minimum Spanning Trees

– Greedy Choice Theorem
– Prim’s algorithm

Master Informatique 																																		27Data Structures and Algorithms

Chapter	8 Graphs

Spanning Tree
• A spanning tree of G is a subgraph which

– contains all vertices of G
– is a tree

• How many edges
are there in a
spanning tree,
if V is the set
of vertices?

Master Informatique 																																		28Data Structures and Algorithms

Chapter	8 Graphs

Minimum Spanning Trees

6

14 7

3 10

5
12

9

15
8

w %T&= ∑
%u , v &∈T

w %u, v &

• Undirected, connected
graph G = (V,E)

● Weight function W: E - R
(assigning cost or length or
other values to edges)

• Spanning tree: tree that
connects all vertexes

• Minimum spanning tree
(MST): spanning tree T that
minimizes

Master Informatique 																																		29Data Structures and Algorithms

Chapter	8 Graphs

Optimal Substructure

Rationale:
 If G’ had a cheaper subtree T’,
 then we would get a cheaper subtree of G: T’ + (u,v)

MST(G) = T
u

v
”u+v”

MST(G’) = T – (u,v)

Master Informatique 																																		30Data Structures and Algorithms

Chapter	8 Graphs

Idea for an Algorithm
• We have to make |V|–1 choices (edges of the MST)

to arrive at the optimization goal
• After each choice we have a sub-problem

that is one vertex smaller than the original problem.
– A dynamic programming algorithm would consider all

possible choices (edges) at each vertex.
– Goal: at each vertex cheaply determine an edge that

definitely belongs to an MST

Master Informatique 																																		31Data Structures and Algorithms

Chapter	8 Graphs

Greedy Choice
Greedy choice property: locally optimal (greedy) choice
yields a globally optimal solution.

Theorem: Let G = (V, E) and S 1 V. Consider the cut of G
formed by S and V \ S, that is, the partitioning into two
disjoint parts.
• Suppose (u,v) is a light edge, that is, it is a min-weight

edge of G that connects S and V – S.
• Then (u,v) belongs to every MST of G

Master Informatique 																																		32Data Structures and Algorithms

Chapter	8 Graphs

Greedy Choice/2
Proof:
• Suppose (u,v) is light, but (u,v) 3 any MST
• Look at the path from u to v in some MST T
• Let (x, y) be the first edge on a path from u to v in T

that crosses from S to V – S. Swap (x, y) with (u,v) in T.
• This improves cost of T
è Contradiction (since T is supposed to be an MST)

u v

x
y

S V-S

Master Informatique 																																		33Data Structures and Algorithms

Chapter	8 Graphs

Generic MST Algorithm

A safe edge is an edge that does not destroy A’s property.

MoreSpecific-MST(G, w)
1 A := / // Contains edges that belong to a MST
2 while A does not form a spanning tree do
3.1 Make a cut (S, V-S) of G that does not split A
3.2 Take the min-weight edge (u,v) connecting S to V-S
4 A := A 0 {(u,v)}
5 return A

MoreSpecific-MST(G, w)
1 A := / // Contains edges that belong to a MST
2 while A does not form a spanning tree do
3.1 Make a cut (S, V-S) of G that does not split A
3.2 Take the min-weight edge (u,v) connecting S to V-S
4 A := A 0 {(u,v)}
5 return A

Generic-MST(G, w)
1 A := / // Contains edges that belong to a MST
2 while A does not form a spanning tree do
3 find an edge (u,v) that is safe for A
4 A := A 0 {(u,v)}
5 return A

Generic-MST(G, w)
1 A := / // Contains edges that belong to a MST
2 while A does not form a spanning tree do
3 find an edge (u,v) that is safe for A
4 A := A 0 {(u,v)}
5 return A

Master Informatique 																																		34Data Structures and Algorithms

Chapter	8 Graphs

Prim-Jarnik Algorithm
• Vertex-based algorithm
• Grows a single MST T one vertex at a time
• The set A covers the portion of T

that was already computed
• Annotate all vertices v outside of the set A

with v.key as the current minimum weight of an edge
that connects v to a vertex in A
(v.key = , if no such edge exists)

Master Informatique 																																		35Data Structures and Algorithms

Chapter	8 Graphs

Prim-Jarnik Algorithm/2

MST-Prim(G,s)
01 for each vertex u 2 G.V
02 u.key := ,
03 u.pred := NULL
04 s.key := 0
05 init(Q, G.V) // Q is a priority queue
06 while not isEmpty(Q)
07 u := extractMin(Q) // add u to T
08 for each v 2 u.adj do
09 if v 2 Q and w(u,v) < v.key then
1 v.key := w(u,v)
11 modifyKey(Q,v)
12 v.pred := u

updating
keys

Master Informatique 																																		36Data Structures and Algorithms

Chapter	8 Graphs

Prim-Jarnik Example

H

B C

I
A

D

G

F E

1

6
8

4

12

8

3

6

5 3

4 13 9

10

MST-Prim(Graph,A)

A = {}
Q = A-NULL/0, B-NULL/∞, C-NULL/∞, D-NULL/∞,
 E-NULL/∞, F-NULL/∞, G-NULL/∞, H-NULL/∞,
 I-NULL/∞

Master Informatique 																																		37Data Structures and Algorithms

Chapter	8 Graphs

Prim-Jarnik Example/2

H

B C

I
A

D

G

F E

1

6
8

4

12

8

3

6

5 3

4 13 9

10

A = A-NULL/0
Q = B-A/4, H-A/8, C-NULL/∞, D-NULL/∞, E-NULL/∞,
 F-NULL/∞, G-NULL/∞, I-NULL/∞

Master Informatique 																																		38Data Structures and Algorithms

Chapter	8 Graphs

Prim-Jarnik Example/3

H

B C

I
A

D

G

F E

1

6
8

4

12

8

3

6

5 3

4 13 9

10

A = A-NULL/0, B-A/4
Q = H-A/8, C-B/8, D-NULL/∞, E-NULL/∞,
 F-NULL/∞, G-NULL/∞, I-NULL/∞

Master Informatique 																																		39Data Structures and Algorithms

Chapter	8 Graphs

Prim-Jarnik Example/4

H

B C

I
A

D

G

F E

1

6
8

4

12

8

3

6

5 3

4 13 9

10

A = A-NULL/0, B-A/4, H-A/8
Q = G-H/1, I-H/6, C-B/8, D-NULL/∞, E-NULL/∞,
 F-NULL/∞

Master Informatique 																																		40Data Structures and Algorithms

Chapter	8 Graphs

Prim-Jarnik Example/5

H

B C

I
A

D

G

F E

1

6
8

4

12

8

3

6

5 3

4 13 9

10

A = A-NULL/0, B-A/4, H-A/8, G-H/1
Q = F-G/3, I-G/5, C-B/8, D-NULL/∞, E-NULL/∞

Master Informatique 																																		41Data Structures and Algorithms

Chapter	8 Graphs

Prim-Jarnik Example/6

H

B C

I
A

D

G

F E

1

6
8

4

12

8

3

6

5 3

4 13 9

10

A = A-NULL/0, B-A/4, H-A/8, G-H/1, F-G/3
Q = C-F/4, I-G/5, E-F/10, D-F/13

Master Informatique 																																		42Data Structures and Algorithms

Chapter	8 Graphs

Prim-Jarnik Example/7

H

B C

I
A

D

G

F E

1

6
8

4

12

8

3

6

5 3

4 13 9

10

A = A-NULL/0, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4
Q = I-C/3, D-C/6, E-F/10

Master Informatique 																																		43Data Structures and Algorithms

Chapter	8 Graphs

Prim-Jarnik Example/8

H

B C

I
A

D

G

F E

1

6
8

4

12

8

3

6

5 3

4 13 9

10

A = A-NULL/0, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4, I-C/3
Q = D-C/6, E-F/10

Master Informatique 																																		44Data Structures and Algorithms

Chapter	8 Graphs

Prim-Jarnik Example/9

H

B C

I
A

D

G

F E

1

6
8

4

12

8

3

6

5 3

4 13 9

10

A = A-NULL/0, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4,
 I-C/3, D-C/6
Q = E-D/9

Master Informatique 																																		45Data Structures and Algorithms

Chapter	8 Graphs

Prim-Jarnik Example/10

H

B C

I
A

D

G

F E

1

6
8

4

12

8

3

6

5 3

4 13 9

10

A = A-NULL/0, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4,
 I-C/3, D-C/6, E-D/9
Q = {}

Master Informatique 																																		46Data Structures and Algorithms

Chapter	8 Graphs

Implementation Issues

MST-Prim(G,r)
01 for u 2 G.V do u.key := ,; u.pred := NULL
02 r.key := 0
03 init(Q, G.V) // Q is a min-priority queue
04 while not isEmpty(Q) do
05 u := extractMin(Q) // add u to T
06 for v 2 u.adj do
07 if v 2 Q and w(u,v) < v.key then
08 v.key := w(u,v)
09 modifyKey(Q,v)
10 v.pred := u

Master Informatique 																																		47Data Structures and Algorithms

Chapter	8 Graphs

Prim-Jarnik Running Time

• Time = |V|*T(extractMin) + O(E)*T(modifyKey)

• E ≥ V-1, E < V2, E = O(V2)
• Binary heap implementation:

– Time = O(V logV + E logV) = O(V2 logV) = O(E logV)

O(E logV)O(log V)O(log V)binary heap
O(V2)O(1)O(V)array
TotalT(modifyKey)T(extractMin)Q

Master Informatique 																																		48Data Structures and Algorithms

Chapter	8 Graphs

About Greedy Algorithms
• Greedy algorithms make a locally optimal choice

(cheapest path, etc).
• In general, a locally optimal choice does not give a

globally optimal solution.
• Greedy algorithms can be used to solve optimization

problems, if:
– There is an optimal substructure
– We can prove that a greedy choice at each iteration

leads to an optimal solution.

