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• The course follows the book “Introduction to Algorithms‘”, 

by Cormen, Leiserson, Rivest and Stein, MIT Press 
[CLRST]. Many examples displayed in these slides  are 
taken from their book. 

• These slides are based on those developed by 
Michael Böhlen for this course. 

(See http://www.inf.unibz.it/dis/teaching/DSA/)

• The slides also include a number of additions made by 
Roberto Sebastiani and Kurt Ranalter when they taught 
later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)
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– Dijkstra’s algorithm
3. Minimum Spanning Trees

– Greedy Choice Theorem
– Prim’s algorithm
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Weighted Graphs
• May be directed or undirected graphs G = (V,E)
• Have a weight function 

w : E - R  
which assigns cost or length or other values to edges
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Shortest Path
• We generalize distance to the weighted setting
• We consider a digraph G = (V,E) with weight function 

w: E - R (assigning real values to edges)
• The weight of path p = v1 - v2 - … - vk is

• Shortest path = a path of minimum weight (cost)
• Applications

– static/dynamic network routing
– robot motion planning
– map/route generation in traffic
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Shortest-Path Problems
• Single-source. Find a shortest path from a given source 

(vertex s) to each of the vertices.
 

• Single-pair. Given two vertices, find a shortest path 
between them. Solution to single-source problem solves 
this problem efficiently, too.
 

• All-pairs. Find shortest-paths for every pair of vertices. 
Dynamic programming algorithm. 
 

• Unweighted shortest-paths – BFS.     
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Optimal Substructure
Theorem: Subpaths of shortest paths are shortest paths.

Proof:
If some subpath were not the shortest path, 
one could substitute the shorter subpath 
and create a shorter total path.
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Negative Weights and Cycles
Observations:
• Negative edges are OK, 

as long as there are no negative weight cycles 
(otherwise, paths with arbitrary small “lengths” 
would be possible).

• Shortest-paths can have no cycles 
(otherwise we could improve them by removing cycles).

Any shortest path in graph G can be no longer than 
n – 1 edges, where n is the number of vertices.
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Shortest Path Tree
• The result of the algorithms is a shortest path tree (SPT). 

For each vertex v, it 
– records a shortest path from the start vertex s to v;
– v.pred is the predecessor of v on this shortest path
– v.dist is the shortest path length from s to v

• Note: SPT is different from minimum spanning tree 
(MST)!
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Relaxation
• For each vertex v in the graph, we maintain v.dist, the 

estimate of the shortest path from s. It is initialized to 
 , at the start.

• Relaxing an edge (u,v) means testing whether we can 
improve the shortest path to v found so far by going 
through u.
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Relax (u,v)
if v.dist > u.dist + w(u,v) then
   v.dist := u.dist + w(u,v)
   v.pred := u
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Dijkstra's Algorithm
• Assumption: non-negative edge weights
• Greedy, similar to Prim's algorithm for MST
• Like breadth-first search 

    (if all weights = 1, one can simply use BFS)
• Use Q, a priority queue with keys v.dist 

(BFS used FIFO queue, here we use a PQ, 
which is re-organized whenever some dist decreases)

• Basic idea
– maintain a set S of solved vertices
– at each step, select a "closest" vertex u, 

add it to S, and 
relax all edges from u
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Priority Queues
• A priority queue maintains a set S of elements, 

each with an associated key value.
 

• We need a PQ to support the following operations
– init(VertexSet S) 
– Vertex extractMin()  
– modifyKey(Vertex v, Key k) 

 

• To choose how to implement a PQ, we need to count 
how many times these operations are performed.
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Dijkstra’s Algorithm: Pseudo Code
Input: Graph G, start vertex s

Dijkstra(G,s) do
01 for u 2 G.V
02    u.dist := ,
03    u.pred := NULL

04 s.dist := 0

05 Q := new PriorityQueue

06 Q.init(G.V) // initialize priority queue Q

07 while not Q.isEmpty() do

08    u := Q.extractMin()

09    for v 2 u.adj do
10       if v in Q and u.dist+w(u,v) < v.dist

11          then Q.modifyKey(v,u.dist+w(u,v))

12               v.pred := u

relax 
edges

initialize 
graph
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Dijkstra’s Algorithm: Example/1
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Dijkstra(G,s)

01 for u 2 G.V do

02    u.dist := ,

03    u.pred := NULL

04 s.dist := 0

05 Q := new PriorityQueue

06 Q.init(G.V) 

07 while not Q.isEmpty() do

08    u := Q.extractMin()

09    for v 2 u.adj do

10       if v in Q and u.dist+w(u,v) < v.dist

11          then Q.modifyKey(v,u.dist+w(u,v))

12               v.pred := u
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Dijkstra’s Algorithm: Example/2
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Dijkstra(G,s)

01 for u 2 G.V do

02    u.dist := ,

03    u.pred := NULL

04 s.dist := 0

05 Q := new PriorityQueue

06 Q.init(G.V) 

07 while not Q.isEmpty() do

08    u := Q.extractMin()

09    for v 2 u.adj do

10       if v in Q and u.dist+w(u,v) < v.dist

11          then Q.modifyKey(v,u.dist+w(u,v))

12               v.pred := u
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Dijkstra’s Algorithm: Example/3

8 9

5 7

0s

u v

yx

10

5

1

2 3 9
4

6
7

2

8 9

5 7

0s

u v

yx

10

5

1

2 3 9
4

6
7

2

Dijkstra(G,s)

01 for u 2 G.V do

02    u.dist := ,

03    u.pred := NULL

04 s.dist := 0

05 Q := new PriorityQueue

06 Q.init(G.V) 

07 while not Q.isEmpty() do

08    u := Q.extractMin()

09    for v 2 u.adj do

10       if v in Q and u.dist+w(u,v) < v.dist

11          then Q.modifyKey(v,u.dist+w(u,v))

12               v.pred := u
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Notation
For any nodes u, v in G = (V,E), we define

          δ(u,v) = minimal length of a path from u to v

We call δ(u,v) the distance from u to v
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Dijkstra’s Algorithm: Correctness/1
• We prove that whenever u is added to the set S of 

solved vertices, then u.dist = δ(s,u), i.e., dist is minimum.
• Proof (by contradiction)

– Initially 'v: v.dist . δ(s,v)
– Let u be the first vertex such that there is a shorter 

path than u.dist, i.e., u.dist + δ(s,u)
– We will show that this assumption leads to a 

contradiction
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Dijkstra’s Algorithm: Correctness/2
• Let y be the first vertex in V \ S on the actual shortest 

path from s to u, then it must be that y.dist = δ(s,y) 
because
– x.dist is set correctly for y's predecessor x2S on the 

shortest path (by choice of u as the first vertex for 
which dist is set incorrectly)

– when the algorithm inserted x into S, it relaxed the 
edge (x,y), setting y.dist to the correct value
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Dijkstra’s Algorithm: Correctness/3

• But u.dist > y.dist 4 algorithm would have chosen y 
(from the PQ) to process next, not u 
4 contradiction

• Thus, u.dist = δ(s,u) at time of insertion of u into S, and 
Dijkstra's algorithm is correct

u.dist > δ(s,u) initial assumption
          = δ(s,y) + δ(y,u) optimal substructure
          = y.dist + δ(y,u) correctness of y.dist
          ≥ y.dist no negative weights
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Implementation Issues
We highlight the operations on the priority queue

Dijkstra(G,s) do
01 for u 2 G.V
02    u.dist := ,
03    u.pred := NULL

04 s.dist := 0

05 Q := new PriorityQueue

06 Q.init(G.V) // initialize priority queue Q

07 while not Q.isEmpty() do

08    u := Q.extractMin()

09    for v 2 u.adj do
10       if v in Q and u.dist+w(u,v) < v.dist

11          then Q.modifyKey(v,u.dist+w(u,v))

12               v.pred := u

relax 
edges

initialize 
graph
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Priotity Queue Operations
We can implement priority queues as
• simple arrays
• heaps.

In both cases,
• initializing takes time O(n)
• emptyness checks take time O(1)

However, the running times differ for
• ExtractMax()
• ModifyKey
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Dijkstra’s Algorithm: Running Time
• Extract-Min executed |V| times
• Modify-Key executed |E| times
• Time = |V| x TExtract-Min + |E| x TModify-Key

• T depends on implementation of Q

O(|E| log |V |)O(log |V |)O(log |V |)heap
O(|V|2)O(1)O(|V |)array 
TotalT(Modify-Key)T(Extract-Min)  Q
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DSA, Chapter 8: Overview

1. Weighted Graphs
2. Shortest Paths

– Dijkstra’s algorithm
3. Minimum Spanning Trees

– Greedy Choice Theorem
– Prim’s algorithm
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Spanning Tree
• A spanning tree of G is a subgraph which

– contains all vertices of G
– is a tree

• How many edges 
are there in a 
spanning tree, 
if V is the set 
of vertices?
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Minimum Spanning Trees
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• Undirected, connected 
graph G = (V,E)

● Weight function W: E - R  
(assigning cost or length or 
other values to edges)

• Spanning tree: tree that 
connects all vertexes

• Minimum spanning tree 
(MST): spanning tree T  that 
minimizes
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Optimal Substructure

Rationale:
      If G’  had a cheaper subtree T’, 
      then we would get a cheaper subtree of G: T’ + (u,v)

MST(G) = T
u

v
”u+v”

MST(G’) = T – (u,v)
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Idea for an Algorithm
• We have to make |V|–1 choices (edges of the MST) 

to arrive at the optimization goal
• After each choice we have a sub-problem 

that is one vertex smaller than the original problem.
– A dynamic programming algorithm would consider all 

possible choices (edges) at each vertex.
– Goal: at each vertex cheaply determine an edge that 

definitely belongs to an MST  
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Greedy Choice
Greedy choice property: locally optimal (greedy) choice 
yields a globally optimal solution.

Theorem:  Let G = (V, E) and S  1 V. Consider the cut of G 
formed by S and V \ S, that is, the partitioning into two 
disjoint parts.
• Suppose (u,v) is a light edge, that is, it is a min-weight 

edge of G that connects S and V – S.
• Then (u,v) belongs to every MST of G
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Greedy Choice/2
Proof:
• Suppose (u,v) is light, but (u,v) 3 any MST
• Look at the path from u to v in some MST T
• Let (x, y) be the first edge on a path from u to v in T 

that crosses from S to V – S. Swap (x, y) with (u,v) in T.
• This improves  cost of T 
è Contradiction (since T is supposed to be an MST) 

u v

x
y

S V-S
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Generic MST Algorithm

A safe edge is an edge that does not destroy A’s property. 

MoreSpecific-MST(G, w)
1   A :=     / // Contains edges that belong to a MST
2   while A does not form a spanning tree do
3.1    Make a cut (S, V-S) of G that does not split A 
3.2    Take the min-weight edge (u,v) connecting S to V-S  
4      A := A  0 {(u,v)}
5 return A  

MoreSpecific-MST(G, w)
1   A :=     / // Contains edges that belong to a MST
2   while A does not form a spanning tree do
3.1    Make a cut (S, V-S) of G that does not split A 
3.2    Take the min-weight edge (u,v) connecting S to V-S  
4      A := A  0 {(u,v)}
5 return A  

Generic-MST(G, w)
1 A :=     / // Contains edges that belong to a MST
2 while A does not form a spanning tree do
3    find an edge (u,v) that is safe for A 
4    A := A  0 {(u,v)}
5 return A  

Generic-MST(G, w)
1 A :=     / // Contains edges that belong to a MST
2 while A does not form a spanning tree do
3    find an edge (u,v) that is safe for A 
4    A := A  0 {(u,v)}
5 return A  
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Prim-Jarnik Algorithm
• Vertex-based algorithm
• Grows a single MST T one vertex at a time
• The set A covers the portion of T 

that was already computed
• Annotate all vertices v outside of the set A 

with v.key as the current minimum weight of an edge 
that connects v to a vertex in A
(v.key = , if no such edge exists)
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Prim-Jarnik Algorithm/2

MST-Prim(G,s)
01 for each vertex u 2 G.V
02   u.key := ,
03   u.pred := NULL
04 s.key := 0
05 init(Q, G.V) // Q is a priority queue
06 while not isEmpty(Q)
07   u := extractMin(Q) // add u to T
08   for each v 2 u.adj do
09     if v 2 Q and w(u,v) < v.key then
1      v.key := w(u,v)
11       modifyKey(Q,v)
12       v.pred := u

updating 
keys
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Prim-Jarnik Example
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MST-Prim(Graph,A)

A = {}
Q = A-NULL/0, B-NULL/∞, C-NULL/∞, D-NULL/∞, 
        E-NULL/∞, F-NULL/∞, G-NULL/∞, H-NULL/∞, 
        I-NULL/∞
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Prim-Jarnik Example/2
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A = A-NULL/0
Q = B-A/4, H-A/8, C-NULL/∞, D-NULL/∞, E-NULL/∞, 
        F-NULL/∞, G-NULL/∞, I-NULL/∞
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Prim-Jarnik Example/3
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A = A-NULL/0, B-A/4
Q = H-A/8, C-B/8, D-NULL/∞, E-NULL/∞, 
        F-NULL/∞, G-NULL/∞, I-NULL/∞
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Prim-Jarnik Example/4
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A = A-NULL/0, B-A/4, H-A/8
Q = G-H/1, I-H/6, C-B/8, D-NULL/∞, E-NULL/∞, 
        F-NULL/∞
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Prim-Jarnik Example/5
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A = A-NULL/0, B-A/4, H-A/8, G-H/1
Q = F-G/3, I-G/5, C-B/8, D-NULL/∞, E-NULL/∞
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Prim-Jarnik Example/6
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A = A-NULL/0, B-A/4, H-A/8, G-H/1, F-G/3
Q = C-F/4, I-G/5, E-F/10, D-F/13
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Prim-Jarnik Example/7
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A = A-NULL/0, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4
Q = I-C/3, D-C/6, E-F/10
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Prim-Jarnik Example/8
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A = A-NULL/0, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4, I-C/3
Q = D-C/6, E-F/10
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Prim-Jarnik Example/9
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A = A-NULL/0, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4, 
        I-C/3, D-C/6
Q = E-D/9
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Prim-Jarnik Example/10
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A = A-NULL/0, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4, 
        I-C/3, D-C/6, E-D/9 
Q = {}
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Implementation Issues

MST-Prim(G,r)
01 for u 2 G.V do u.key := ,; u.pred := NULL
02 r.key := 0
03 init(Q, G.V) // Q is a min-priority queue
04 while not isEmpty(Q) do
05   u := extractMin(Q) // add u to T
06   for v 2 u.adj do
07     if v 2 Q and w(u,v) < v.key then
08       v.key := w(u,v)
09       modifyKey(Q,v)
10       v.pred := u
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Prim-Jarnik Running Time

• Time = |V|*T(extractMin) + O(E)*T(modifyKey)

• E ≥ V-1, E < V2, E = O(V2)
• Binary heap implementation: 

– Time = O(V logV + E logV) = O(V2 logV) = O(E logV)

O(E logV)O(log V)O(log V)binary heap
O(V2)O(1)O(V)array 
TotalT(modifyKey)T(extractMin)Q
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About Greedy Algorithms
• Greedy algorithms make a locally optimal choice 

(cheapest path, etc).
• In general, a locally optimal choice does not give a 

globally optimal solution.
• Greedy algorithms can be used to solve optimization 

problems, if:
– There is an optimal substructure
– We can prove that a greedy choice at each iteration 

leads to an optimal solution.


