Chapter 8 Graphs

Data Structures and Algorithms

Chapter 8

Algorithms for Weighted Graphs

Werner Nutt

Data Structures and Algorithms 1

Acknowledgments

* The course follows the book “Introduction to Algorithms",
by Cormen, Leiserson, Rivest and Stein, MIT Press
[CLRST]. Many examples displayed in these slides are
taken from their book.

* These slides are based on those developed by
Michael Bohlen for this course.
(See http://www.inf.unibz.it/dis/teaching/DSA/)
* The slides also include a number of additions made by

Roberto Sebastiani and Kurt Ranalter when they taught
later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)

Chapter 8 Graphs

DSA, Chapter 8: Overview

1. Weighted Graphs

2. Shortest Paths
— Dijkstra’s algorithm

3. Minimum Spanning Trees
— Greedy Choice Theorem
— Prim’s algorithm

Data Structures and Algorithms 3

Chapter 8 Graphs

DSA, Chapter 8: Overview

1. Weighted Graphs

2. Shortest Paths
— Dijkstra’s algorithm

3. Minimum Spanning Trees
— Greedy Choice Theorem
— Prim’s algorithm

Data Structures and Algorithms 4

Chapter 8 Graphs

Weighted Graphs

* May be directed or undirected graphs G = (V,E)
* Have a weight function
w.:E—R
which assigns cost or length or other values to edges

Data Structures and Algorithms 5

Chapter 8 Graphs

DSA, Chapter 8: Overview

1. Weighted Graphs

2. Shortest Paths
— Dijkstra’s algorithm

3. Minimum Spanning Trees
— Greedy Choice Theorem
— Prim’s algorithm

Data Structures and Algorithms 6

Shortest Path

* We generalize distance to the weighted setting

* We consider a digraph G = (V,E) with weight function
w: E — R (assigning real values to edges)

« The weightofpathp=v,—-v,— ... > v_is

w([)=E_'(Vi Vi

* Shortest path = a path of minimum weight (cost)
* Applications

— static/dynamic network routing

— robot motion planning

— map/route generation in traffic

Shortest-Path Problems

* Single-source. Find a shortest path from a given source
(vertex s) to each of the vertices.

* Single-pair. Given two vertices, find a shortest path
between them. Solution to single-source problem solves
this problem efficiently, too.

* All-pairs. Find shortest-paths for every pair of vertices.
Dynamic programming algorithm.

* Unweighted shortest-paths — BFS.

Optimal Substructure

Theorem: Subpaths of shortest paths are shortest paths.

Proof:

If some subpath were not the shortest path,
one could substitute the shorter subpath
and create a shorter total path.

OO O30

Negative Weights and Cycles

Observations:

* Negative edges are OK,
as long as there are no negative weight cycles
(otherwise, paths with arbitrary small “lengths”
would be possible).

* Shortest-paths can have no cycles
(otherwise we could improve them by removing cycles).

Any shortest path in graph G can be no longer than
n — 1 edges, where n is the number of vertices.

10

Shortest Path Tree

* The result of the algorithms is a shortest path tree (SPT).
For each vertex v, it

— records a shortest path from the start vertex s to v;
— v.pred is the predecessor of v on this shortest path
— v.dist is the shortest path length from s to v

* Note: SPT is different from minimum spanning tree
(MST)!

oe

MST

2

Relaxation

* For each vertex v in the graph, we maintain v.dist, the
estimate of the shortest path from s. /t is initialized to
o at the start.

* Relaxing an edge (u,v) means testing whether we can
improve the shortest path to v found so far by going
through wu.

Relax (u, V)

.
;

if v.dist > u.dist + w(u,v) then
Relax(u,v) v.dist := u.dist + w(u,vVv)

v.pred := u

Relax(u,v)

<
<

c
N
<
@
N
<@

12

Dijkstra’'s Algorithm

Assumption: non-negative edge weights
Greedy, similar to Prim's algorithm for MST

Like breadth-first search
(if all weights = 1, one can simply use BFS)

Use Q, a priority queue with keys v.dist
(BFS used FIFO queue, here we use a PQ,
which is re-organized whenever some dist decreases)

Basic idea
— maintain a set S of solved vertices

— at each step, select a "closest" vertex u,
add itto S, and
relax all edges from u

13

Priority Queues

* A priority queue maintains a set S of elements,
each with an associated key value.

* We need a PQ to support the following operations
— init(VertexSet S)
— Vertex extractMin()
— modifyKey(Vertex v, Key k)

* To choose how to implement a PQ, we need to count
how many times these operations are performed.

14

Dijkstra’s Algorithm: Pseudo Code

Input: Graph G, start vertex s

Dijkstra (G,s) do

01l for u € G.V

02 u.dist := o

03 u.pred := NULL

04 s.dist := 0

05 Q := new PriorityQueue

06 Q.init(G.V) // initialize priority queue Q

07 while not Q.isEmpty () do

08 u := Q.extractMin ()

09 for v € u.adj do

10 if v in Q and u.dist+w(u,v) < v.dist
11 then Q.modifyKey (v,u.dist+w(u,v))
12 v.pred := u

initialize
graph

relax
edges

15

Chapter 8 Graphs

Dijkstra’s Algorithm: Example/1

Dijkstra (G,s)
0l for u € G.V do

02 u.dist := o

03 u.pred := NULL

04 s.dist := 0

05 Q := new PriorityQueue S

06 Q.init (G.V)
07 while not Q.isEmpty () do

08 u := Q.extractMin ()

09 for v € u.adj do

10 if v in Q0 and u.dist+w(u,v) < v.dist
11 then Q.modifyKey (v,u.dist+w(u,v))
12 v.pred := u

Data Structures and Algorithms 16

Dijkstra’s Algorithm: Example/2

Dijkstra (G,s)
01l for u € G.V do

02 u.dist := o

03 u.pred := NULL

04 s.dist := 0

05 Q := new PriorityQueue

06 Q.init (G.V)
07 while not Q.isEmpty () do

08 u := Q.extractMin ()

09 for v € u.adj do

10 if v in Q0 and u.dist+w(u,v) < v.dist
11 then Q.modifyKey (v,u.dist+w(u,v))
12 v.pred := u

17

Dijkstra’s Algorithm: Example/3

Dijkstra (G,s)
01l for u € G.V do

02 u.dist := o

03 u.pred := NULL

04 s.dist := 0

05 Q := new PriorityQueue

06 Q.init (G.V)
07 while not Q.isEmpty () do

08 u := Q.extractMin ()

09 for v € u.adj do

10 if v in Q0 and u.dist+w(u,v) < v.dist
11 then Q.modifyKey (v,u.dist+w(u,v))
12 v.pred := u

Chapter 8 Graphs

Notation

For any nodes u, vin G = (V,E), we define

d(u,v) = minimal length of a path from u to v

We call 6(u,v) the distance from uto v

Data Structures and Algorithms 19

Dijkstra’s Algorithm: Correctness/1

* We prove that whenever u is added to the set S of
solved vertices, then u.dist = 6(s,u), i.e., dist is minimum.

* Proof (by contradiction)
— Initially Vv: v.dist = 4(s,V)

— Let u be the first vertex such that there is a shorter
path than u.dist, i.e., u.dist > 6(s,u)

— We will show that this assumption leads to a
contradiction

20

Dijkstra’s Algorithm: Correctness/2

* Let y be the first vertex in V' \ S on the actual shortest
path from s to u, then it must be that y.dist = d(s,y)
because

— x.dist is set correctly for y's predecessor xS on the
shortest path (by choice of u as the first vertex for
which dist is set incorrectly)

— when the algorithm inserted x into S, it relaxed the
edge (x,y), setting y.dist to the correct value

21

Dijkstra’s Algorithm: Correctness/3

u.dist > §(s,u) initial assumption
=93(s,y) + d(y,u) optimal substructure
= y.dist + o(y,u) correctness of y.dist
= y.dist no negative weights

* But u.dist > y.dist = algorithm would have chosen y
(from the PQ) to process next, not u
= contradiction

* Thus, u.dist = §(s,u) at time of insertion of u into S, and
Dijkstra's algorithm is correct

22

Implementation Issues
We highlight the operations on the priority queue

Dijkstra (G,s) do

01 for u € G.V initialize
02 u.dist := o© graph
03 u.pred := NULL

04 s.dist := 0

05 Q := new PriorityQueue

06 Q.init(G.V) // initialize priority queue Q

07 while not Q.isEmpty () do

08 u := Q.extractMin ()

09 for v € u.adj do relax
10 if v in Q and u.dist+w(u,v) < v.dist | edges
11 then Q.modifyKey (v,u.dist+w(u,v))

12 v.pred := u

23

Priotity Queue Operations

We can implement priority queues as
* simple arrays
* heaps.

In both cases,
* initializing takes time O(n)
* emptyness checks take time O(7)

However, the running times differ for
* ExtractMax()
* ModifyKey

Data Structures and Algorithms 24

Dijkstra’s Algorithm: Running Time

* Extract-Min executed | V| times
* Modify-Key executed |E| times

* Time = |V| X TExtract—Min + |E| X TM

T depends on implementation of Q

odify-Key

Q T(Extract-Min) | T(Modify-Key) Total
array | O(|V]) O(1) O(1V]?)
heap | O(log |V']) O(log [V]) O(|E] log |V'])

25

Chapter 8 Graphs

DSA, Chapter 8: Overview

1. Weighted Graphs

2. Shortest Paths
— Dijkstra’s algorithm

3. Minimum Spanning Trees
— Greedy Choice Theorem
— Prim’s algorithm

Data Structures and Algorithms 26

Spanning Tree

* A spanning tree of G is a subgraph which
— contains all vertices of G
— Is a tree

* How many edges
are there in a
~
spanning tree, O
if Vis the set
of vertices? O

Data Structures and Algorithms 27

Minimum Spanning Trees

* Undirected, connected
graph G = (V,E)

* Weight function W. E—- R
(assigning cost or lengthor ™4
other values to edges)

* Spanning tree: tree that
connects all vertexes

* Minimum spanning tree
(MST): spanning tree T that
minimizes =Y wiuy)

(u,v)eT

%\QO
50O

Chapter 8 Graphs

Optimal Substructure

MST(G) =T MST(G") = T = (u,v)
u "L|+V"

-

Rationale:

If G’ had a cheaper subtree T,
then we would get a cheaper subtree of G: T’ + (u,v)

Data Structures and Algorithms 29

Idea for an Algorithm

* We have to make |V|-1 choices (edges of the MST)
to arrive at the optimization goal

* After each choice we have a sub-problem
that is one vertex smaller than the original problem.

— A dynamic programming algorithm would consider all
possible choices (edges) at each vertex.

— Goal: at each vertex cheaply determine an edge that
definitely belongs to an MST

30

Greedy Choice

Greedy choice property: locally optimal (greedy) choice
yields a globally optimal solution.

Theorem: Let G =(V, E) and S < V. Consider the cut of G

formed by S and V'\ S, that is, the partitioning into two

disjoint parts.

* Suppose (u,v) is a light edge, that is, it is a min-weight
edge of G that connects Sand V - S.

* Then (u,v) belongs to every MST of G

31

Greedy Choice/2

Proof:
* Suppose (u,v) is light, but (u,v) € any MST
* Look at the path from u to vin some MST T

* Let (x, y) be the first edge on a path from utovin T
that crosses from Sto V- S. Swap (x, y) with (u,v) in T.

* This improves costof T
=» Contradiction (since T is supposed to be an MST)

aens

wnnn

S V_S

32

Generic MST Algorithm

Generic-MST (G, w)

1 A := © // Contains edges that belong to a MST
2 while A does not form a spanning tree do

3 find an edge (u,v) that 1s safe for A

4 A = A U{(u,v)}

5 return A

A safe edge is an edge that does not destroy A’s property.

MoreSpecific-MST (G, w)

1 A := ©@ // Contains edges that belong to a MST

2 while A does not form a spanning tree do

3.1 Make a cut (S, V-S) of G that does not split A

3.2 Take the min-weight edge (u,v) connecting S to V-S
4 A := A U{(u,v)}

5 return A

Prim-Jarnik Algorithm

* Vertex-based algorithm
* Grows a single MST T one vertex at a time

* The set A covers the portion of T
that was already computed

* Annotate all vertices v outside of the set A
with v.key as the current minimum weight of an edge
that connects v to a vertex in A
(v.key = o if no such edge exists)

34

Prim-Jarnik Algorithm/2

MST-Prim (G, s)

01 for each vertex u € G.V

02 u.key :=

03 u.pred := NULL

04 s.key := 0

05 init(Q, G.V) // Q is a priority queue

06 while not isEmpty (Q)

07 u = extractMin(Q) // add u to T
08 for each v € u.adj do

09 if v € Q0 and w(u,v) < v.key then updating
1 v.key := w(u,v)
11 modifyKey (Q, V) keys

12 v.pred := u

35

Chapter 8 Graphs

Prim-Jarnik Example

MST-Prim(Graph,A)

A=}

Q = A-NULL/0, B-NULL/e, C-NULL/w, D-NULL/c,
E-NULL/», F-NULL/~, G-NULL/c, H-NULL/,
[-NULL/ 0

Data Structures and Algorithms 36

Chapter 8 Graphs

Prim-Jarnik Example/2

A = A-NULL/0
Q = B-A/4, H-A/8, C-NULL/c, D-NULL/e, E-NULL/c,
F-NULL/c0, G-NULL/c, I-NULL/c

Data Structures and Algorithms 37

Chapter 8 Graphs

Prim-Jarnik Example/3

A = A-NULL/o0, B-A/4
Q = H-A/8, C-B/8, D-NULL/c, E-NULL/c,
F-NULL/w, G-NULL/c, I-NULL/c

Data Structures and Algorithms 38

Chapter 8 Graphs

Prim-Jarnik Example/4

A =A-NULL/o, B-A/4, H-A/8
Q =G-H/1,I-H/6, C-B/8, D-NULL/, E-NULL/,
F-NULL/

Data Structures and Algorithms 39

Chapter 8 Graphs

Prim-Jarnik Example/5

A = A-NULL/o, B-A/4, H-A/8, G-H/1
Q =F-G/3,1-G/5, C-B/8, D-NULL/, E-NULL/

Data Structures and Algorithms 40

Chapter 8 Graphs

Prim-Jarnik Example/6

A = A-NULL/o, B-A/4, H-A/8, G-H/1, F-G/3
Q = C_F/4) I_G/Sa E_F/]-O) D-F/13

Data Structures and Algorithms 41

Chapter 8 Graphs

Prim-Jarnik Example/7

A = A-NULL/o, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4
Q =1-C/3, D-C/6, E-F/10

Data Structures and Algorithms 42

Chapter 8 Graphs

Prim-Jarnik Example/8

A = A-NULL/o, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4, I-C/3
Q =D-C/6, E-F/10

Data Structures and Algorithms 43

Chapter 8 Graphs

Prim-Jarnik Example/9

A = A-NULL/o, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4,
I-C/3, D-C/6
Q=E-D/9

Data Structures and Algorithms 44

Chapter 8 Graphs

Prim-Jarnik Example/10

A = A-NULL/o, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4,
I-C/3, D-C/6, E-D/9
Q=1

Data Structures and Algorithms 45

Chapter 8 Graphs

Implementation Issues

MST-Prim (G, r)

01 for u € G.V do u.key := ®; u.pred := NULL
02 r.key := 0

03 init(Q, G.V) // Q is a min-priority queue
04 while not isEmpty (Q) do

05 u := extractMin(Q) // add u to T

06 for v € u.adj do

07 if v € Q and w(u,v) < v.key then
08 v.key := w(u,v)

09 modifyKey (Q, v)

10 v.pred := u

Data Structures and Algorithms 46

Prim-Jarnik Running Time

* Time = |V|*T(extractMin) + O(E)* T(modifyKey)
Q T(extractMin) | T(modifyKey) |Total
array O(V) O(1) O(V?)
binary heap | O(log V) O(log V) O(E logV)

* E=2V-1,E<V? E =0(V?
* Binary heap implementation:
— Time = O(V logV + E logV) = O(V? logV) = O(E logV)

47

About Greedy Algorithms

* Greedy algorithms make a locally optimal choice
(cheapest path, etc).

* In general, a locally optimal choice does not give a
globally optimal solution.

* Greedy algorithms can be used to solve optimization
problems, if:

— There is an optimal substructure

— We can prove that a greedy choice at each iteration
leads to an optimal solution.

48

