Data Structures and Algorithms

Chapter 8

Algorithms for Weighted Graphs

Werner Nutt

Acknowledgments

- The course follows the book "Introduction to Algorithms"", by Cormen, Leiserson, Rivest and Stein, MIT Press [CLRST]. Many examples displayed in these slides are taken from their book.
- These slides are based on those developed by Michael Böhlen for this course.
(See http://www.inf.unibz.it/dis/teaching/DSA/)
- The slides also include a number of additions made by Roberto Sebastiani and Kurt Ranalter when they taught later editions of this course
(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)

DSA, Chapter 8: Overview

1. Weighted Graphs
2. Shortest Paths

- Dijkstra's algorithm

3. Minimum Spanning Trees

- Greedy Choice Theorem
- Prim's algorithm

DSA, Chapter 8: Overview

1. Weighted Graphs
2. Shortest Paths

- Dijkstra's algorithm

3. Minimum Spanning Trees

- Greedy Choice Theorem
- Prim's algorithm

Weighted Graphs

- May be directed or undirected graphs $G=(V, E)$
- Have a weight function

$$
w: E \rightarrow R
$$

which assigns cost or length or other values to edges

DSA, Chapter 8: Overview

1. Weighted Graphs
2. Shortest Paths

- Dijkstra's algorithm

3. Minimum Spanning Trees

- Greedy Choice Theorem
- Prim's algorithm

Shortest Path

- We generalize distance to the weighted setting
- We consider a digraph $G=(V, E)$ with weight function $w: E \rightarrow R$ (assigning real values to edges)
- The weight of path $p=v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{\mathrm{k}}$ is

$$
w(p)=\sum_{i=1}^{k-1}\left(v_{i} v_{i}\right)_{1}
$$

- Shortest path = a path of minimum weight (cost)
- Applications
- static/dynamic network routing
- robot motion planning
- map/route generation in traffic

Shortest-Path Problems

- Single-source. Find a shortest path from a given source (vertex s) to each of the vertices.
- Single-pair. Given two vertices, find a shortest path between them. Solution to single-source problem solves this problem efficiently, too.
- All-pairs. Find shortest-paths for every pair of vertices. Dynamic programming algorithm.
- Unweighted shortest-paths - BFS.

Optimal Substructure

Theorem: Subpaths of shortest paths are shortest paths.

Proof:
If some subpath were not the shortest path, one could substitute the shorter subpath and create a shorter total path.

Negative Weights and Cycles

Observations:

- Negative edges are OK,
as long as there are no negative weight cycles (otherwise, paths with arbitrary small "lengths" would be possible).
- Shortest-paths can have no cycles (otherwise we could improve them by removing cycles).

Any shortest path in graph G can be no longer than
$n-1$ edges, where n is the number of vertices.

Shortest Path Tree

- The result of the algorithms is a shortest path tree (SPT). For each vertex v, it
- records a shortest path from the start vertex s to v;
- v.pred is the predecessor of v on this shortest path
- v.dist is the shortest path length from s to v
- Note: SPT is different from minimum spanning tree (MST)!

Relaxation

- For each vertex v in the graph, we maintain v. dist, the estimate of the shortest path from s. It is initialized to ∞ at the start.
- Relaxing an edge (u, v) means testing whether we can improve the shortest path to v found so far by going through u.


```
Relax (u,v)
if v.dist > u.dist + w(u,v) then
    v.dist := u.dist + w(u,v)
    v.pred := u
```


Dijkstra's Algorithm

- Assumption: non-negative edge weights
- Greedy, similar to Prim's algorithm for MST
- Like breadth-first search
(if all weights = 1 , one can simply use BFS)
- Use Q, a priority queue with keys v.dist (BFS used FIFO queue, here we use a PQ, which is re-organized whenever some dist decreases)
- Basic idea
- maintain a set S of solved vertices
- at each step, select a "closest" vertex u, add it to S, and relax all edges from u

Priority Queues

- A priority queue maintains a set S of elements, each with an associated key value.
- We need a PQ to support the following operations
- init(VertexSet S)
- Vertex extractMin()
- modifyKey(Vertex v, Key k)
- To choose how to implement a PQ, we need to count how many times these operations are performed.

Dijkstra's Algorithm: Pseudo Code

Input: Graph G, start vertex s

Dijkstra (G, S) do	initialize graph
01 for $u \in G . V$	
02 u.dist $:=\infty$	
03 u.pred $:=$ NULL	
04 s.dist $:=0$	
05 Q := new PriorityQueue	
06 Q.init(G.V) // initialize priority queue Q	
07 while not Q.isEmpty () do	
08 u : Q Q.extractMin ()	
09 for $v \in u . a d j$ do	relax
10 if v in Q and u.dist $+\mathrm{w}(\mathrm{u}, \mathrm{V})<\mathrm{v}$ (dist	edges
11 then Q.modifyKey ($v, u . d i s t+w(u, v)$)	
12 V .pred $:=\mathrm{u}$	

Dijkstra's Algorithm: Example/1

Dijkstra (G,s)
01 for $u \in G . V$ do
02 u.dist $:=\infty$
03 u.pred := NULL
04 s.dist :=0
05 Q := new PriorityQueue
06 Q.init(G.V)
07 while not Q.isEmpty() do
08
v.pred := u

```
    u := Q.extractMin()
    u := Q.extractMin()
    for v \in u.adj do
    for v \in u.adj do
        if v in Q and u.dist+w(u,v) < v.dist
        if v in Q and u.dist+w(u,v) < v.dist
        then Q.modifyKey(v,u.dist+w(u,v))
        then Q.modifyKey(v,u.dist+w(u,v))
        v.pred := u
        v.pred := u


\section*{Dijkstra's Algorithm: Example/2}
Dijkstra (G,S)
01 for \(u \in G . V\) do
02 u.dist \(:=\infty\)
03 u.pred := NULL
04 s.dist := 0
05 Q := new PriorityQueue
06 Q.init(G.V)
07 while not Q.isEmpty() do
08
    u := Q.extractMin()
    u := Q.extractMin()
    for v \in u.adj do
    for v \in u.adj do
        if v in Q and u.dist+w(u,v) < v.dist
        if v in Q and u.dist+w(u,v) < v.dist
        then Q.modifyKey(v,u.dist+w(u,v))
        then Q.modifyKey(v,u.dist+w(u,v))
        v.pred := u
        v.pred := u


\section*{Dijkstra's Algorithm: Example/3}
```

Dijkstra(G,S)
0 1 ~ f o r ~ u ~ \in ~ G . V ~ d o
02 u.dist := \infty
03 u.pred := NULL
04 s.dist := 0
05 Q := new PriorityQueue
06 Q.init(G.V)
0 7 while not Q.isEmpty() do
u := Q.extractMin()
for v \in u.adj do
if v in Q and u.dist+w(u,v) < v.dist
then Q.modifyKey(v,u.dist+w(u,v))
v.pred := u

Notation

For any nodes u, v in $G=(V, E)$, we define
$\delta(u, v)=$ minimal length of a path from u to v
We call $\delta(u, v)$ the distance from u to v

Dijkstra's Algorithm: Correctness/1

- We prove that whenever u is added to the set S of solved vertices, then u.dist $=\delta(s, u)$, i.e., dist is minimum.
- Proof (by contradiction)
- Initially $\forall v$: v.dist $\geq \delta(s, v)$
- Let u be the first vertex such that there is a shorter path than u.dist, i.e., u.dist $>\delta(s, u)$
- We will show that this assumption leads to a contradiction

Dijkstra's Algorithm: Correctness/2

- Let y be the first vertex in $V \backslash S$ on the actual shortest path from s to u, then it must be that y.dist $=\delta(s, y)$ because
- x.dist is set correctly for y 's predecessor $x \in S$ on the shortest path (by choice of u as the first vertex for which dist is set incorrectly)
- when the algorithm inserted x into S, it relaxed the edge (x, y), setting y.dist to the correct value

Data Structures and Algorithms

Dijkstra's Algorithm: Correctness/3

$$
\begin{aligned}
u . d i s t & >\delta(s, u) \\
& =\delta(s, y)+\delta(y, u) \\
& =y . d i s t+\delta(y, u) \\
& \geq y . d i s t
\end{aligned}
$$

initial assumption
correctness of y.dist no negative weights

$$
=\delta(s, y)+\delta(y, u) \quad \text { optimal substructure }
$$

- But u.dist $>y$.dist \Rightarrow algorithm would have chosen y (from the PQ) to process next, not u \Rightarrow contradiction
- Thus, u.dist $=\delta(s, u)$ at time of insertion of u into S, and Dijkstra's algorithm is correct

Implementation Issues

We highlight the operations on the priority queue

initialize graph
relax edges

Priotity Queue Operations

We can implement priority queues as

- simple arrays
- heaps.

In both cases,

- initializing takes time $O(n)$
- emptyness checks take time $O(1)$

However, the running times differ for

- ExtractMax()
- ModifyKey

Dijkstra's Algorithm: Running Time

- Extract-Min executed |V| times
- Modify-Key executed |E| times
- Time $=|V| \times T_{\text {Extract-Min }}+|E| \times T_{\text {Modify-Key }}$
- T depends on implementation of Q

Q	$\mathrm{T}($ Extract-Min $)$	$\mathrm{T}($ Modify-Key $)$	Total
array	$O(\|V\|)$	$O(1)$	$O\left(\|V\|^{2}\right)$
heap	$O(\log \|V\|)$	$O(\log \|V\|)$	$O(\|E\| \log \|V\|)$

DSA, Chapter 8: Overview

1. Weighted Graphs
2. Shortest Paths

- Dijkstra's algorithm

3. Minimum Spanning Trees

- Greedy Choice Theorem
- Prim's algorithm

Spanning Tree

- A spanning tree of G is a subgraph which
- contains all vertices of G
- is a tree
- How many edges are there in a spanning tree, if V is the set of vertices?

Minimum Spanning Trees

- Undirected, connected graph $G=(V, E)$
- Weight function $W: E \rightarrow R$ (assigning cost or length or other values to edges)

- Spanning tree: tree that connects all vertexes
- Minimum spanning tree (MST): spanning tree T that minimizes

$$
\mathrm{w}(\mathrm{~T})=\sum_{(\mathrm{u}, \mathrm{v}) \in \mathrm{T}} \mathrm{w}(\mathrm{u}, \mathrm{v})
$$

Optimal Substructure

MST(G) $=T$

$\operatorname{MST}\left(\mathrm{G}^{\prime}\right)=\mathrm{T}-(\mathrm{u}, \mathrm{v})$

Rationale:
If G^{\prime} had a cheaper subtree T^{\prime},
then we would get a cheaper subtree of $G: T^{\prime}+(u, v)$

Idea for an Algorithm

- We have to make $|V|-1$ choices (edges of the MST) to arrive at the optimization goal
- After each choice we have a sub-problem that is one vertex smaller than the original problem.
- A dynamic programming algorithm would consider all possible choices (edges) at each vertex.
- Goal: at each vertex cheaply determine an edge that definitely belongs to an MST

Greedy Choice

Greedy choice property: locally optimal (greedy) choice yields a globally optimal solution.

Theorem: Let $G=(V, E)$ and $S \subseteq V$. Consider the cut of G formed by S and $V \backslash S$, that is, the partitioning into two disjoint parts.

- Suppose (u, v) is a light edge, that is, it is a min-weight edge of G that connects S and $V-S$.
- Then (u, v) belongs to every MST of G

Greedy Choice/2

Proof:

- Suppose (u, v) is light, but $(u, v) \notin$ any MST
- Look at the path from u to v in some MST T
- Let (x, y) be the first edge on a path from u to v in T that crosses from S to $V-S$. Swap (x, y) with (u, v) in T.
- This improves cost of T
\rightarrow Contradiction (since T is supposed to be an MST)

Generic MST Algorithm

```
Generic-MST(G, w)
```

1 A $:=\varnothing / /$ Contains edges that belong to a MST
2 while A does not form a spanning tree do
3 find an edge (u,v) that is safe for A
4 A $:=A \cup\{(u, v)\}$
5 return A

A safe edge is an edge that does not destroy A 's property.

```
MoreSpecific-MST (G, w)
1 A := \varnothing // Contains edges that belong to a MST
    while A does not form a spanning tree do
3.1 Make a cut (S, V-S) of G that does not split A
3.2 Take the min-weight edge (u,v) connecting S to V-S
4 A := A \cup{(u,v)}
    return A
```


Prim-Jarnik Algorithm

- Vertex-based algorithm
- Grows a single MST T one vertex at a time
- The set A covers the portion of T that was already computed
- Annotate all vertices v outside of the set A
with v.key as the current minimum weight of an edge that connects v to a vertex in A (v. key $=\infty$ if no such edge exists)

Prim-Jarnik Algorithm/2

```
MST-Prim(G,s)
0 1 ~ f o r ~ e a c h ~ v e r t e x ~ u ~ \in ~ G . V ~
02 u.key := \infty
03 u.pred := NULL
04 s.key := 0
05 init(Q, G.V) // Q is a priority queue
0 6 \text { while not isEmpty(Q)}
07 u:= oxtractMin(Q) // add u to T 
```

updating keys

Prim-Jarnik Example

$A=\{ \}$
Q = A-NULL/o, B-NULL/ ∞, C-NULL/ ∞, D-NULL/ ∞, E-NULL/ ∞, F-NULL/ ∞, G-NULL/ ∞, H-NULL/ ∞, I-NULL/ ∞

Prim-Jarnik Example/2

A $=\mathrm{A}-\mathrm{NULL} / \mathrm{o}$
$\mathrm{Q}=\mathrm{B}-\mathrm{A} / 4, \mathrm{H}-\mathrm{A} / 8, \mathrm{C}-\mathrm{NULL} / \infty, \mathrm{D}-\mathrm{NULL} / \infty, \mathrm{E}-\mathrm{NULL} / \infty$, F-NULL/ ∞, G-NULL/ ∞, I-NULL/ ∞

Prim-Jarnik Example/3

$\mathrm{A}=\mathrm{A}-\mathrm{NULL} / \mathrm{o}, \mathrm{B}-\mathrm{A} / 4$
$\mathrm{Q}=\mathrm{H}-\mathrm{A} / 8, \mathrm{C}-\mathrm{B} / 8, \mathrm{D}-\mathrm{NULL} / \infty, \mathrm{E}-\mathrm{NULL} / \infty$, F-NULL/ ∞, G-NULL/ ∞, I-NULL/ ∞

Prim-Jarnik Example/4

$\mathrm{A}=\mathrm{A}-\mathrm{NULL} / \mathrm{o}, \mathrm{B}-\mathrm{A} / 4, \mathrm{H}-\mathrm{A} / 8$
$\mathrm{Q}=\mathrm{G}-\mathrm{H} / 1, \mathrm{I}-\mathrm{H} / 6, \mathrm{C}-\mathrm{B} / 8, \mathrm{D}-\mathrm{NULL} / \infty, \mathrm{E}-\mathrm{NULL} / \infty$, F-NULL/ ∞

Prim-Jarnik Example/5

A = A-NULL/o, B-A/4, H-A/8, G-H/1
$\mathrm{Q}=\mathrm{F}-\mathrm{G} / 3, \mathrm{I}-\mathrm{G} / 5, \mathrm{C}-\mathrm{B} / 8, \mathrm{D}-\mathrm{NULL} / \infty, \mathrm{E}-\mathrm{NULL} / \infty$

Prim-Jarnik Example/6

Prim-Jarnik Example/7

A $=$ A-NULL/o, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4
$\mathrm{Q}=\mathrm{I}-\mathrm{C} / 3, \mathrm{D}-\mathrm{C} / 6, \mathrm{E}-\mathrm{F} / 1 \mathrm{O}$

Prim-Jarnik Example/8

A = A-NULL/o, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4, I-C/3
$\mathrm{Q}=\mathrm{D}-\mathrm{C} / 6, \mathrm{E}-\mathrm{F} / 10$

Prim-Jarnik Example/9

$\mathrm{A}=\mathrm{A}-\mathrm{NULL} / \mathrm{o}, \mathrm{B}-\mathrm{A} / 4, \mathrm{H}-\mathrm{A} / 8, \mathrm{G}-\mathrm{H} / 1, \mathrm{~F}-\mathrm{G} / 3, \mathrm{C}-\mathrm{F} / 4$, I-C/3, D-C/6
$\mathrm{Q}=\mathrm{E}-\mathrm{D} / 9$

Prim-Jarnik Example/10

A = A-NULL/o, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4, I-C/3, D-C/6, E-D/9
$Q=\{ \}$

Implementation Issues

```
MST-Prim(G,r)
01 for u \in G.V do u.key := \infty; u.pred := NULL
02 r.key := 0
03 init(Q, G.V) // Q is a min-priority queue
0 4 ~ w h i l e ~ n o t ~ i s E m p t y ( Q ) ~ d o ~
05 u := extractMin(Q) // add u to T
0 6 ~ f o r ~ v ~ \in ~ u . a d j ~ d o ~
07 if v \in Q and w(u,v) < v.key then
08 v.key := w (u,v)
09 modifyKey(Q,v)
10 v.pred := u
```


Prim-Jarnik Running Time

- Time $=|V|^{*} T($ extractMin $)+O(E)^{*} T$ (modifyKey)

Q	T(extractMin)	T(modifyKey)	Total
array	$O(V)$	$O(1)$	$O\left(V^{2}\right)$
binary heap	$O(\log V)$	$O(\log V)$	$O(E \log V)$

- $\mathrm{E} \geq \mathrm{V}-1, \mathrm{E}<\mathrm{V}^{2}, \mathrm{E}=\mathrm{O}\left(\mathrm{V}^{2}\right)$
- Binary heap implementation:
- Time $=O(V \log V+E \log V)=O\left(V^{2} \log V\right)=O(E \log V)$

About Greedy Algorithms

- Greedy algorithms make a locally optimal choice (cheapest path, etc).
- In general, a locally optimal choice does not give a globally optimal solution.
- Greedy algorithms can be used to solve optimization problems, if:
- There is an optimal substructure
- We can prove that a greedy choice at each iteration leads to an optimal solution.

