# Data Structures and Algorithms Chapter 8

## **Algorithms for Weighted Graphs**

Werner Nutt

### **Acknowledgments**

- The course follows the book "Introduction to Algorithms", by Cormen, Leiserson, Rivest and Stein, MIT Press [CLRST]. Many examples displayed in these slides are taken from their book.
- These slides are based on those developed by Michael Böhlen for this course.

(See http://www.inf.unibz.it/dis/teaching/DSA/)

 The slides also include a number of additions made by Roberto Sebastiani and Kurt Ranalter when they taught later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011\_BZ//)

### **DSA, Chapter 8: Overview**

- 1. Weighted Graphs
- 2. Shortest Paths
  - Dijkstra's algorithm
- 3. Minimum Spanning Trees
  - Greedy Choice Theorem
  - Prim's algorithm

### **DSA, Chapter 8: Overview**

- 1. Weighted Graphs
- 2. Shortest Paths
  - Dijkstra's algorithm
- 3. Minimum Spanning Trees
  - Greedy Choice Theorem
  - Prim's algorithm

### **Weighted Graphs**

- May be *directed* or *undirected* graphs G = (V, E)
- Have a weight function

 $w: E \rightarrow R$ 

which assigns cost or length or other values to edges



### **DSA, Chapter 8: Overview**

- 1. Weighted Graphs
- 2. Shortest Paths
  - Dijkstra's algorithm
- 3. Minimum Spanning Trees
  - Greedy Choice Theorem
  - Prim's algorithm

#### **Shortest Path**

- We generalize *distance* to the weighted setting
- We consider a digraph G = (V,E) with weight function
   w: E → R (assigning real values to edges)
- The weight of path  $p = v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k$  is

$$w(p) = \sum_{i=1}^{k-1} (v_i, v_i)_1$$

- Shortest path = a path of minimum weight (cost)
- Applications
  - static/dynamic network routing
  - robot motion planning
  - map/route generation in traffic

#### **Shortest-Path Problems**

- Single-source. Find a shortest path from a given source (vertex *s*) to each of the vertices.
- Single-pair. Given two vertices, find a shortest path between them. Solution to single-source problem solves this problem efficiently, too.
- All-pairs. Find shortest-paths for every pair of vertices. Dynamic programming algorithm.
- Unweighted shortest-paths BFS.

### **Optimal Substructure**

Theorem: Subpaths of shortest paths are shortest paths.

Proof:

If some subpath were not the shortest path, one could substitute the shorter subpath and create a shorter total path.



### **Negative Weights and Cycles**

Observations:

- Negative edges are OK, as long as there are no *negative weight cycles* (otherwise, paths with arbitrary small "lengths" would be possible).
- Shortest-paths can have no cycles (otherwise we could improve them by removing cycles).

Any shortest path in graph *G* can be no longer than n - 1 edges, where *n* is the number of vertices.

#### **Shortest Path Tree**

- The result of the algorithms is a *shortest path tree (SPT)*. For each vertex *v*, it
  - records a shortest path from the start vertex s to v;
  - v.pred is the predecessor of v on this shortest path
  - -v.dist is the shortest path length from s to v
- Note: SPT is different from minimum spanning tree
   (MST)!



### Relaxation

- For each vertex v in the graph, we maintain v.dist, the estimate of the shortest path from s. It is initialized to ∞ at the start.
- Relaxing an edge (*u*,*v*) means testing whether we can improve the shortest path to *v* found so far by going through *u*.



## **Dijkstra's Algorithm**

- Assumption: non-negative edge weights
- Greedy, similar to Prim's algorithm for MST
- Like breadth-first search (if all weights = 1, one can simply use BFS)
- Use Q, a priority queue with keys v.dist (BFS used FIFO queue, here we use a PQ, which is re-organized whenever some dist decreases)
- Basic idea
  - maintain a set S of solved vertices
  - at each step, select a "closest" vertex u, add it to S, and relax all edges from u

#### **Priority Queues**

- A priority queue maintains a set S of elements, each with an associated key value.
- We need a PQ to support the following operations
  - init(VertexSet S)
  - Vertex extractMin()
  - modifyKey(Vertex v, Key k)
- To choose how to implement a PQ, we need to count how many times these operations are performed.

### **Dijkstra's Algorithm: Pseudo Code**

Input: Graph G, start vertex s

Dijkstra(G, S) do

| 01                         | for u ∈ G.V                                                                                                                                        | initialize     |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 02                         | u.dist := $\infty$                                                                                                                                 | graph          |
| 03                         | u.pred := NULL                                                                                                                                     |                |
| 04                         | s.dist := 0                                                                                                                                        |                |
| 05                         | Q := new PriorityQueue                                                                                                                             |                |
| 06                         | Q.init(G.V) // initialize priority queue Q                                                                                                         |                |
|                            |                                                                                                                                                    |                |
| 07                         | <pre>while not Q.isEmpty() do</pre>                                                                                                                |                |
| 07<br>08                   | <pre>while not Q.isEmpty() do     u := Q.extractMin()</pre>                                                                                        |                |
| 07<br>08<br>09             | <pre>while not Q.isEmpty() do     u := Q.extractMin()     for v ∈ u.adj do</pre>                                                                   | relax          |
| 07<br>08<br>09<br>10       | <pre>while not Q.isEmpty() do     u := Q.extractMin()     for v ∈ u.adj do         if v in Q and u.dist+w(u,v) &lt; v.dist</pre>                   | relax<br>edges |
| 07<br>08<br>09<br>10<br>11 | <pre>while not Q.isEmpty() do u := Q.extractMin() for v ∈ u.adj do if v in Q and u.dist+w(u,v) &lt; v.dist then Q.modifyKey(v,u.dist+w(u,v))</pre> | relax<br>edges |

### Dijkstra's Algorithm: Example/1

**Dijkstra**(G,s)

- 01 for  $u \in G.V$  do
- 02 u.dist :=  $\infty$
- 03 u.pred := NULL
- 04 s.dist := 0
- 05 Q := new PriorityQueue
- 06 Q.init(G.V)
- 07 while not Q.isEmpty() do
- 08 u := Q.extractMin()
- 09 for  $v \in u.adj$  do
- 10 if v in Q and u.dist+w(u,v) < v.dist
- 11 then Q.modifyKey(v,u.dist+w(u,v))

```
12 v.pred := u
```





#### **Dijkstra's Algorithm: Example/2**

**Dijkstra**(G,s)

- 01 for  $u \in G.V$  do
- 02 u.dist :=  $\infty$
- 03 u.pred := NULL

04 s.dist := 0

- 05 Q := new PriorityQueue
- 06 Q.init(G.V)
- 07 while not Q.isEmpty() do
- 08 u := Q.extractMin()
- 09 for  $v \in u.adj$  do
- 10 if v in Q and u.dist+w(u,v) < v.dist
- 11 then Q.modifyKey(v,u.dist+w(u,v))

```
12 v.pred := u
```





### Dijkstra's Algorithm: Example/3

**Dijkstra**(G,s)

- 01 for  $u \in G.V$  do
- 02 u.dist :=  $\infty$
- 03 u.pred := NULL

04 s.dist := 0

- 05 Q := new PriorityQueue
- 06 Q.init(G.V)
- 07 while not Q.isEmpty() do
- 08 u := Q.extractMin()
- 09 for  $v \in u.adj$  do
- 10 if v in Q and u.dist+w(u,v) < v.dist
- 11 then Q.modifyKey(v,u.dist+w(u,v))

12 v.pred := u





#### Notation

For any nodes u, v in G = (V, E), we define

 $\delta(u,v)$  = minimal length of a path from *u* to *v* 

We call  $\delta(u, v)$  the distance from *u* to *v* 

### **Dijkstra's Algorithm: Correctness/1**

- We prove that whenever u is added to the set S of solved vertices, then u.dist =  $\delta(s,u)$ , i.e., dist is minimum.
- Proof (by contradiction)
  - Initially  $\forall v: v.dist \geq \delta(s,v)$
  - Let *u* be the **first** vertex such that there is a shorter path than *u*.dist, i.e., *u*.dist >  $\delta(s,u)$
  - We will show that this assumption leads to a contradiction



### **Dijkstra's Algorithm: Correctness/2**

- Let y be the first vertex in  $V \setminus S$  on the actual shortest path from s to u, then it must be that y.dist =  $\delta(s,y)$ because
  - *x*.dist is set correctly for *y*'s predecessor  $x \in S$  on the shortest path (by choice of *u* as the first vertex for which dist is set incorrectly)
  - when the algorithm inserted x into S, it relaxed the edge (x,y), setting y.dist to the correct value



#### **Dijkstra's Algorithm: Correctness/3**

 $u.dist > \delta(s,u)$ =  $\delta(s,y) + \delta(y,u)$ =  $y.dist + \delta(y,u)$  $\ge y.dist$  initial assumption optimal substructure correctness of y.dist no negative weights



- But *u*.dist > *y*.dist ⇒ algorithm would have chosen *y* (from the PQ) to process next, not *u* ⇒ contradiction
- Thus, *u*.dist =  $\delta(s, u)$  at time of insertion of *u* into *S*, and Dijkstra's algorithm is correct

#### **Implementation Issues**

We highlight the operations on the priority queue

Dijkstra(G, S) do



## **Priotity Queue Operations**

We can implement priority queues as

- simple arrays
- heaps.

In both cases,

- initializing takes time O(n)
- emptyness checks take time O(1)

However, the running times differ for

- ExtractMax()
- ModifyKey

### **Dijkstra's Algorithm: Running Time**

- Extract-Min executed |V| times
- Modify-Key executed |E| times
- Time =  $|V| \times T_{\text{Extract-Min}} + |E| \times T_{\text{Modify-Key}}$
- *T* depends on implementation of *Q*

| Q     | T(Extract-Min)              | T(Modify-Key)               | Total                                    |
|-------|-----------------------------|-----------------------------|------------------------------------------|
| array | O( V )                      | <i>O</i> (1)                | <i>O</i> (  <i>V</i>   <sup>2</sup> )    |
| heap  | <i>O</i> (log   <i>V</i>  ) | <i>O</i> (log   <i>V</i>  ) | <i>O</i> (  <i>E</i>   log   <i>V</i>  ) |

### **DSA, Chapter 8: Overview**

- 1. Weighted Graphs
- 2. Shortest Paths
  - Dijkstra's algorithm
- 3. Minimum Spanning Trees
  - Greedy Choice Theorem
  - Prim's algorithm

### **Spanning Tree**

- A spanning tree of G is a subgraph which
  - contains all vertices of G
  - is a tree
- How many edges are there in a spanning tree, if V is the set of vertices?



### **Minimum Spanning Trees**

- Undirected, connected graph G = (V, E)
- Weight function W: E → R (assigning cost or length or other values to edges)
- Spanning tree: tree that connects all vertexes
- Minimum spanning tree (MST): spanning tree T that minimizes  $w(T) = \sum w(u, v)$





#### **Optimal Substructure**



#### Rationale:

If G' had a cheaper subtree T', then we would get a cheaper subtree of G: T' + (u,v)

### Idea for an Algorithm

- We have to make |V|-1 choices (edges of the MST) to arrive at the optimization goal
- After each choice we have a sub-problem that is one vertex smaller than the original problem.
  - A dynamic programming algorithm would consider all possible choices (edges) at each vertex.
  - Goal: at each vertex cheaply determine an edge that definitely belongs to an MST

### **Greedy Choice**

Greedy choice property: locally optimal (greedy) choice yields a globally optimal solution.

**Theorem:** Let G = (V, E) and  $S \subseteq V$ . Consider the cut of G formed by S and  $V \setminus S$ , that is, the partitioning into two disjoint parts.

- Suppose (u,v) is a light edge, that is, it is a min-weight edge of G that connects S and V – S.
- Then (*u*,*v*) belongs to every MST of G

### **Greedy Choice/2**

Proof:

- Suppose (u,v) is light, but  $(u,v) \notin$  any MST
- Look at the path from *u* to *v* in some MST *T*
- Let (x, y) be the first edge on a path from u to v in T that crosses from S to V – S. Swap (x, y) with (u,v) in T.
- This improves cost of T
- $\rightarrow$  Contradiction (since *T* is supposed to be an MST)



#### **Generic MST Algorithm**



A safe edge is an edge that does not destroy A's property.

```
MoreSpecific-MST(G, w)
1 A := Ø // Contains edges that belong to a MST
2 while A does not form a spanning tree do
3.1 Make a cut (S, V-S) of G that does not split A
3.2 Take the min-weight edge (u,v) connecting S to V-S
4 A := A U { (u,v) }
5 return A
```

### **Prim-Jarnik Algorithm**

- Vertex-based algorithm
- Grows a single MST T one vertex at a time
- The set A covers the portion of T that was already computed
- Annotate all vertices v outside of the set A with v.key as the current minimum weight of an edge that connects v to a vertex in A (v.key = ∞ if no such edge exists)

#### **Prim-Jarnik Algorithm/2**





 $\begin{array}{l} A = \{ \} \\ Q = A-NULL/o, B-NULL/\infty, C-NULL/\infty, D-NULL/\infty, \\ & E-NULL/\infty, F-NULL/\infty, G-NULL/\infty, H-NULL/\infty, \\ & I-NULL/\infty \end{array}$ 



A = A-NULL/0 Q = B-A/4, H-A/8, C-NULL/ $\infty$ , D-NULL/ $\infty$ , E-NULL/ $\infty$ , F-NULL/ $\infty$ , G-NULL/ $\infty$ , I-NULL/ $\infty$ 



A = A-NULL/0, B-A/4 Q = H-A/8, C-B/8, D-NULL/ $\infty$ , E-NULL/ $\infty$ , F-NULL/ $\infty$ , G-NULL/ $\infty$ , I-NULL/ $\infty$ 



A = A-NULL/0, B-A/4, H-A/8 Q = G-H/1, I-H/6, C-B/8, D-NULL/ $\infty$ , E-NULL/ $\infty$ , F-NULL/ $\infty$ 



#### A = A-NULL/0, B-A/4, H-A/8, G-H/1 Q = F-G/3, I-G/5, C-B/8, D-NULL/ $\infty$ , E-NULL/ $\infty$



A = A-NULL/0, B-A/4, H-A/8, G-H/1, F-G/3 Q = C-F/4, I-G/5, E-F/10, D-F/13



A = A-NULL/0, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4 Q = I-C/3, D-C/6, E-F/10



A = A-NULL/0, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4, I-C/3 Q = D-C/6, E-F/10



A = A-NULL/0, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4, I-C/3, D-C/6 Q = E-D/9



A = A-NULL/0, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4, I-C/3, D-C/6, E-D/9 Q = {}

#### **Implementation Issues**

```
MST-Prim(G,r)
01 for u \in G.V do u.key := \infty; u.pred := NULL
02 r.key := 0
03 init(Q, G.V) // Q is a min-priority queue
04 while not is Empty (Q) do
     u := extractMin(Q) // add u to T
05
06 for v \in u.adj do
07
       if v \in Q and w(u, v) < v.key then
08
         v.key := w(u,v)
09
         modifyKey(Q,V)
10
         v.pred := u
```

### **Prim-Jarnik Running Time**

• Time = |V|\*T(extractMin) + O(E)\*T(modifyKey)

| Q           | T(extractMin) | T(modifyKey) | Total         |
|-------------|---------------|--------------|---------------|
| array       | O(V)          | <i>O</i> (1) | $O(V^2)$      |
| binary heap | $O(\log V)$   | $O(\log V)$  | $O(E \log V)$ |

- $E \ge V-1, E < V^2, E = O(V^2)$
- Binary heap implementation:

 $- \text{Time} = O(V \log V + E \log V) = O(V^2 \log V) = O(E \log V)$ 

### **About Greedy Algorithms**

- Greedy algorithms make a locally optimal choice (cheapest path, etc).
- In general, a locally optimal choice does not give a globally optimal solution.
- Greedy algorithms can be used to solve optimization problems, if:
  - There is an *optimal substructure*
  - We can prove that a greedy choice at each iteration leads to an optimal solution.