
Master Informatique 																																		1Data Structures and Algorithms

Chapter	7 Graphs

Data Structures and Algorithms

 Chapter 7

Graphs

Werner Nutt

Master Informatique 																																		2Data Structures and Algorithms

Chapter	7 Graphs

Acknowledgments
• The course follows the book “Introduction to Algorithms‘”,

by Cormen, Leiserson, Rivest and Stein, MIT Press
[CLRST]. Many examples displayed in these slides are
taken from their book.

• These slides are based on those developed by
Michael Böhlen for this course.

(See http://www.inf.unibz.it/dis/teaching/DSA/)

• The slides also include a number of additions made by
Roberto Sebastiani and Kurt Ranalter when they taught
later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)

Master Informatique 																																		3Data Structures and Algorithms

Chapter	7 Graphs

DSA, Chapter 7: Overview

1. Graphs – Principles
2. Graph representations
3. Traversing Graphs

● Breadth-First Search
● Depth-First Search

4. DAGs and Topological Sorting

Master Informatique 																																		4Data Structures and Algorithms

Chapter	7 Graphs

DSA, Chapter 7: Overview

1. Graphs – Principles
2. Graph representations
3. Traversing Graphs

● Breadth-First Search
● Depth-First Search

4. DAGs and Topological Sorting

Master Informatique 																																		5Data Structures and Algorithms

Chapter	7 Graphs

Graphs – Definition
A graph G = (V,E) is composed of

– a set of vertices V
– a set of edges E - V , V connecting the vertices

An edge e = (u,v) is a pair of vertices

We assume directed graphs
– if a graph is undirected,

we represent an edge between u and v
by two pairs (u,v) . E and (v,u) . E

V = {A, B, C, D}

E = {(A,B), (B,A), (A,C), (C,A),
 (C,D), (D,C), (B,C), (C,B)}

A B

DC

A B

DC

Master Informatique 																																		6Data Structures and Algorithms

Chapter	7 Graphs

Applications
• Electronic circuits, pipeline networks
• Transportation and communication networks
• Modeling any sort of relationships

(between components, people, processes, concepts)

Master Informatique 																																		7Data Structures and Algorithms

Chapter	7 Graphs

Graph Terminology

A vertex v is adjacent to vertex u iff (u,v) . E

The degree of a vertex: # of adjacent vertices

A path is a sequence of vertices v1 ,v2 ,. . .vk such that
vi+1 is adjacent to vi for i = 1 .. k – 1

3

3 3

2

3

Master Informatique 																																		8Data Structures and Algorithms

Chapter	7 Graphs

Graph Terminology/2
Simple path – a path with no repeated vertices

Cycle – a simple path, except
that the last vertex is the same
as the first vertex

Connected graph – any two vertices are connected
by some path

a b

ed

c

Master Informatique 																																		9Data Structures and Algorithms

Chapter	7 Graphs

Graph Terminology/3
Subgraph – a subset of vertices and edges forming a graph

Connected component – maximal connected subgraph.
Example: the graph below has 3 connected components

Master Informatique 																																		10Data Structures and Algorithms

Chapter	7 Graphs

Graph Terminology/4
Tree – connected graph without cycles

Forest – collection of trees

Master Informatique 																																		11Data Structures and Algorithms

Chapter	7 Graphs

DSA, Chapter 7: Overview

1. Graphs – Principles
2. Graph Representations
3. Traversing Graphs

● Breadth-First Search
● Depth-First Search

4. DAGs and Topological Sorting

Master Informatique 																																		12Data Structures and Algorithms

Chapter	7 Graphs

Adjacency Matrix
Matrix M with entries for all pairs of vertices
• M[i,j] = true – there is an edge (i,j) in the graph
• M[i,j] = false – there is no edge (i,j) in the graph

Needs space Θ(|V|2)

Master Informatique 																																		13Data Structures and Algorithms

Chapter	7 Graphs

Data Structures for Graphs
• The adjacency list of a vertex v:

 sequence of vertices adjacent to v
• A graph is represented by

the adjacency lists
of all its vertices

• Needs space Θ(|V|+|E|)

b

b

b

a

a

a

a

c

c

c

c

d

d

d

de

e

e

e

a b

ed

c

Master Informatique 																																		14Data Structures and Algorithms

Chapter	7 Graphs

Pseudocode Assumptions
Each node has some properties (fields of a record):

– adj: list of adjacent nodes
– dist: distance from start node in a traversal
– pred: predecessor in a traversal
– color: color of the node (is changed during traversal:

white, gray, black)
– starttime: time when first visited during a traversal

(depth first search)
– endtime: time when last visited during a traversal

(depth first search)

Master Informatique 																																		15Data Structures and Algorithms

Chapter	7 Graphs

DSA, Chapter 7: Overview

1. Graphs – Principles
2. Graph Representations
3. Traversing Graphs

● Breadth-First Search
● Depth-First Search

4. DAGs and Topological Sorting

Master Informatique 																																		16Data Structures and Algorithms

Chapter	7 Graphs

Graph Searching Algorithms
• Systematic search of every edge and vertex of the graph
• Graph G = (V,E) is either directed or undirected
• Applications

– Memory management
 (Cheney algorithm for garbage collection)

– Graphics (ray tracing)
– Maze-solving
– Networks: routing, searching, clustering, etc.

Master Informatique 																																		17Data Structures and Algorithms

Chapter	7 Graphs

DSA, Chapter 7: Overview

1. Graphs – Principles
2. Graph Representations
3. Traversing Graphs

● Breadth-First Search
● Depth-First Search

4. DAGs and Topological Sorting

Master Informatique 																																		18Data Structures and Algorithms

Chapter	7 Graphs

Breadth-First Search
• A Breadth-First Search (BFS) traverses

a connected component of an (un)directed graph, and
in doing so defines a spanning tree.

• BFS in an undirected graph G is like
wandering in a labyrinth with a string and
exploring the neighborhood first.

• The starting vertex s, it is assigned distance 0.

• In the first round the string is unrolled 1 unit.
All edges that are 1 edge away from the anchor
are visited (discovered) and assigned distance 1.

Master Informatique 																																		19Data Structures and Algorithms

Chapter	7 Graphs

Breadth-First Search/2
• In the second round, all the new edges

that can be reached by unrolling the string 2 edges
are visited and assigned a distance of 2

• This continues until every vertex
has been assigned a level

• The label of any vertex v corresponds to
the length of the shortest path (in terms of edges)
from s to v

Master Informatique 																																		20Data Structures and Algorithms

Chapter	7 Graphs

BFS Algorithm

BFS(G,s)
01 for u . G.V do
02 u.color := white
03 u.dist := +
04 u.pred := NULL
05 s.color := gray
06 s.dist := 0
07 Q := new Queue() // FIFO queue
08 Q.enqueue(s)
09 while not Q.isEmpty() do
10 u)* Q.dequeue()
11 for v . u.adj do
12 if v.color = white
13 then v.color := gray
14 v.dist := u.dist + 1
15 v.pred := u
16 Q.enqueue(v)
17 u.color := black

Initialize all vertices

Initialize BFS with s

Handle all of u's
children
before handling
children of children

Master Informatique 																																		21Data Structures and Algorithms

Chapter	7 Graphs

Coloring of Vertices
• A vertex is white if it is undiscovered
• A vertex is gray if it has been discovered

but not all of its edges have been explored
• A vertex is black after all of its adjacent vertices have

been discovered (the adj. list was examined completely)

Let's do an example of BFS: a

d

g e

c

s b

f

Master Informatique 																																		22Data Structures and Algorithms

Chapter	7 Graphs

BFS Running Time
Given a graph G = (V,E)

– Vertices are enqueued if their color is white
– Assuming that en- and dequeuing takes O(1) time

the total cost of this operation is O(V)
– Adjacency list of a vertex is scanned

when the vertex is dequeued
– The sum of the lengths of all lists is Θ(E)

Thus, Θ(E) time is spent on scanning them
– Initializing the algorithm takes Θ(V)

Total running time is Θ(V+E)
 (linear in the size of the adjacency list representation of G)

Master Informatique 																																		23Data Structures and Algorithms

Chapter	7 Graphs

BFS Properties
Given a graph G = (V,E).

Then BFS
• discovers all vertices reachable from a source vertex s,
• computes the shortest distance to all reachable vertices

 (proof in textbook [CLRS]),
• computes a breadth-first tree that contains all such

reachable vertices
 (tree property holds because pred is unique).

For any vertex v reachable from s,
the path in the breadth first tree from s to v,

corresponds to a shortest path in G

Master Informatique 																																		24Data Structures and Algorithms

Chapter	7 Graphs

BFS Applications
• Find a shortest path,

where length is measured in number of edges.
• Find connected components

of an undirected graph
• Garbage collection

(Traverse the graph of objects reachable from the stack in BFS
manner.)

• Check whether a graph is bipartite
(A graph is bipartite if its vertices can be coloured red and blue such
that no edge connects vertices of the same colour.)

Master Informatique 																																		25Data Structures and Algorithms

Chapter	7 Graphs

DSA, Chapter 7: Overview

1. Graphs – Principles
2. Graph representations
3. Traversing Graphs

● Breadth-First Search
● Depth-First Search

4. DAGs and Topological Sorting

Master Informatique 																																		26Data Structures and Algorithms

Chapter	7 Graphs

Depth-First Search
A depth-first search (DFS) in an undirected graph G
is like wandering in a labyrinth with a string
and following one path to the end
• We start at vertex s, tying the end of our string to the

point and painting s “visited (discovered)”;
next we label s as our current vertex called u

• Now, we travel along an arbitrary edge (u,v)
• If edge (u,v) leads us to an already visited vertex v,

we return to u
• If vertex v is unvisited, we unroll our string, move to v,

paint v “visited”, set v as our current vertex,
and repeat the previous steps

Master Informatique 																																		27Data Structures and Algorithms

Chapter	7 Graphs

Depth-First Search/2
• Eventually, we will get to a point where

all edges from u lead to visited vertices
• We then backtrack by rolling up our string until we get

back to a previously visited vertex v
• v becomes our current vertex and we repeat the

previous steps

Master Informatique 																																		28Data Structures and Algorithms

Chapter	7 Graphs

DFS Algorithm

DFS-All(G)
01 for u . G.V do
02 u.color := white
03 u.pred := NIL
04 time)* 0
05 for u . G.V do
06 if u.color = white then DFS(u)

DFS(u)
01 u.color := gray
02 time)* time + 1
03 u.starttime := time
04 for v . u.adj do
05 if v.color = white then
06 v.pred := u
07 DFS(v)
08 u.color := black
09 time)* time + 1
10 u.endtime := time

Init all vertices

Visit all vertices

Visit all children
recursively
(children of children
are visited first)

Master Informatique 																																		29Data Structures and Algorithms

Chapter	7 Graphs

DFS Algorithm/2

• Initialize – color all vertices white
• Visit each and every white vertex using DFS-All

(even if there are disconnected trees)
• Each call to DFS(u)

roots a new tree of the depth-first forest
at vertex u

• When DFS returns, each vertex u has assigned
– a discovery time d[u]
– a finishing time f[u]

Master Informatique 																																		30Data Structures and Algorithms

Chapter	7 Graphs

Example of DFS

• Start with s:

• Explores subgraph s first, t second

tszy

x w v u
4/5 7/8

3/6 2/9 1/10

12/13 14/15

11/16

Master Informatique 																																		31Data Structures and Algorithms

Chapter	7 Graphs

DFS Algorithm: Running Time
Running time

– the loops in DFS-All take time Θ(V) each,
excluding the time to execute DFS

– DFS is called once for every vertex
• it's only invoked on white vertices, and
• paints the vertex gray immediately

– for each DFS a loop interates over all v.adj

– the total cost for DFS is Θ(E)
– the running time of DFS-All is Θ(V+E)

∑v∈V
∣v.adj∣=(&E '

Master Informatique 																																		32Data Structures and Algorithms

Chapter	7 Graphs

DFS versus BFS
• The BFS algorithms visits all vertices that are reachable

from the start vertex.
It returns one search tree.

• The DFS-All algorithm visits all vertices in the graph.
It may return multiple search trees.

• The difference comes from the applications
of BFS and DFS.
This behavior of the algorithms depends on the policy
according to which the next nodes to be processed
are determined.

Master Informatique 																																		33Data Structures and Algorithms

Chapter	7 Graphs

Generic Graph Search

• BFS if GrayVertices is a Queue (FIFO)
• DFS if GrayVertices is a Stack (LIFO)

GenericGraphSearch(G,s)
01 for each vertex u . G.V do
02 u.color := white; u.pred := NIL
04 s.color := gray
05 GrayVertices := new Container();
06 GrayVertices.addTo(s)
07 while not GrayVertices.isEmpty() do
08 u)* GrayVertices.extractFrom()
09 for each v . u.adj do
10 if v.color = white then
11 v.color := gray
12 v.pred := u
13 GrayVertices.addTo(v)
14 u.color := black

Master Informatique 																																		34Data Structures and Algorithms

Chapter	7 Graphs

DFS Annotations
• A DFS can be used to annotate vertices and edges with

additional information.

– starttime (when was the vertex visited first)

– endtime (when was the vertex visited last)

– edge classification (tree, forward, back or cross edge)

• The annotations reveal useful information about the
graph that is used by advanced algorithms

Master Informatique 																																		35Data Structures and Algorithms

Chapter	7 Graphs

DFS Timestamping
• Vertex u is

– white before u.starttime
– gray between u.starttime and u.endtime, and
– black after u.endtime

• Notice the structure throughout the algorithm
– gray vertices form a linear chain
– correponds to a stack of vertices that have not been

exhaustively explored
(DFS started, but not yet finished)

Master Informatique 																																		36Data Structures and Algorithms

Chapter	7 Graphs

DFS Parenthesis Theorem
• Start and end times have parenthesis structure

– represent starttime of u with left parenthesis "(u"
– represent endtime of u with right parenthesis "u)"
– history of start- and endtimes makes a well-formed

expression (parentheses are properly nested)

• Intuition for proof:
 any two intervals are either disjoint or enclosed
– Overlapping intervals would mean finishing ancestor,

before finishing descendant or starting descendant
without starting ancestor

Master Informatique 																																		37Data Structures and Algorithms

Chapter	7 Graphs

DFS Parenthesis Theorem/2
t

B

szy

x w v u

B

C C C

CF

s t

z

y w

x

v u

(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4/5 7/8

3/6 2/9 1/10

12/13 14/15

11/16

Master Informatique 																																		38Data Structures and Algorithms

Chapter	7 Graphs

DFS Edge Classification
• Tree edge (gray to white)

– Edges in depth-first forest
• Back edge (gray to gray)

– from descendant to ancestor in depth-first tree
– Self-loops

t

B

szy

x w v u

B

C C C

CF

4/5 7/8

3/6 2/9 1/10

12/13 14/15

11/16

Master Informatique 																																		39Data Structures and Algorithms

Chapter	7 Graphs

DFS Edge Classification
• Forward edge (gray to black)

– Nontree edge from ancestor to descendant
in depth-first tree

• Cross edge (gray to black)
– remainder – between trees or subtrees

t

B

szy

x w v u

B

C C C

CF

4/5 7/8

3/6 2/9 1/10

12/13 14/15

11/16

Master Informatique 																																		40Data Structures and Algorithms

Chapter	7 Graphs

DFS Edge Classification/3
• In a DFS the color of the next vertex decides the edge

type (this makes it impossible to distinguish forward and
cross edges)

• Tree and back edges are important

• Most algorithms do not distinguish between forward and
cross edges

Master Informatique 																																		41Data Structures and Algorithms

Chapter	7 Graphs

DFS Applications
• Find connected components

(in an undirected graph)
• Check whether a digraph is bipartite
• Check a digraph for cycles
• Find a linear order that refines a given partial order

(“topological sorting” è next section)

DFS is the core of other graph algorithms, e.g., for
• finding strongly connected components of a digraph
• finding bridges in a graph

Master Informatique 																																		42Data Structures and Algorithms

Chapter	7 Graphs

Suggested exercises
• Implement BFS and DFS, both iterative and recursive

• Using paper & pencil, simulate the behaviour
of BFS and DFS (and All-DFS) on some graphs,
drawing the evolution of the queue/stack

Master Informatique 																																		43Data Structures and Algorithms

Chapter	7 Graphs

DSA, Chapter 7: Overview

1. Graphs – Principles
2. Graph representations
3. Traversing Graphs

● Breadth-First Search
● Depth-First Search

4. DAGs and Topological Sorting

Master Informatique 																																		44Data Structures and Algorithms

Chapter	7 Graphs

Directed Acyclic Graphs (DAGs)
• A DAG is a directed graph without cycles

• DAGs are used to indicate precedence among events
(event x must happen before y)

• An example would be a parallel code execution
• We get a total order using Topological Sorting

Master Informatique 																																		45Data Structures and Algorithms

Chapter	7 Graphs

DAG Theorem
A directed graph G is acyclic if and only if a DFS of G yields
no back edges.

Proof: Suppose there is a back edge (u,v):
Then v is an ancestor of u in DFS forest. Thus, there is a
path from v to u in G and (u,v) completes the cycle.
Suppose there is a cycle c: Let v be the first vertex in c to
be discovered and u is the predecessor of v in c.
• Upon discovering v the whole cycle from v to u is white
• We visit all nodes reachable on this white path before

DFS(v) returns, i.e., vertex u becomes a descendant of v
• Thus, (u,v) is a back edge

Thus, we can verify whether G is a DAG using DFS

Master Informatique 																																		46Data Structures and Algorithms

Chapter	7 Graphs

Topological Sorting Example
• Precedence relations: an edge from x to y means one

must be done with x before one can do y
• Intuition: can schedule task only when all of its

precondition subtasks have been scheduled

socks undershorts pants shoes watch shirt belt tie jacket
17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

undershorts

pants

socks

shoes
watch

shirt

tie

jacket belt

9/10
13/14

17/1811/16

6/7

12/152/5

1/8

3/4

Master Informatique 																																		47Data Structures and Algorithms

Chapter	7 Graphs

Topological Sorting/1

• Sorting of a directed acyclic graph (DAG)
• A topological sort of a DAG

is a linear ordering of all its vertices
such that for any edge (u,v) in the DAG,
u appears before v in the ordering

Master Informatique 																																		48Data Structures and Algorithms

Chapter	7 Graphs

Topological Sorting/2
The following algorithm topologically sorts a DAG

The linked lists comprises a total ordering

Remark: Of course, in practice, one need not compute the
endtime, it is enough to insert each vertex when work on it
is finished.

TopologicalSort(G)
 Call DSF(G) to compute
 v.endtime for each vertex v
 As each vertex is finished,
 insert it at the beginning of a linked list
 Return the linked list of vertices

Master Informatique 																																		49Data Structures and Algorithms

Chapter	7 Graphs

Topological Sorting Correctness
Claim: If G is a DAG and (u,v).E è u.endtime > v.endtime
• When (u,v) is explored, u is gray.

We can distinguish three cases:
– v.color = gray è (u,v) is a back edge (cycle, contradiction)
– v.color = white è v becomes descendant of u

è v will be finished before u
è v.endtime < u.endtime

– v.color = black è v is already finished
è v.endtime < u.endtime

• The definition of topological sort is satisfied

Master Informatique 																																		50Data Structures and Algorithms

Chapter	7 Graphs

Topological Sorting: Running Time

• Running time
– depth-first search: O(V+E) time
– insert each of the |V| vertices to the front

of the linked list: O(1) per insertion

• Thus the total running time is O(V+E)

Master Informatique 																																		51Data Structures and Algorithms

Chapter	7 Graphs

Suggested Exercises
• Implement topological sorting,

with a check for the DAG property

• Using paper & pencil,
simulate the behaviour of topological sorting

Master Informatique 																																		52Data Structures and Algorithms

Chapter	7 Graphs

Summary
• Graphs

– G = (V,E), vertex, edge,
(un)directed graph, cycle, connected component, ...

• Graph representation: matrix/adjacency list
• Basic techniques to traverse/search graphs

– Breadth-First Search (BFS)
– Depth-First Search (DFS)

• Topological Sorting

