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Acknowledgments
• The course follows the book “Introduction to Algorithms‘”, 

by Cormen, Leiserson, Rivest and Stein, MIT Press 
[CLRST]. Many examples displayed in these slides  are 
taken from their book 

• These slides are based on those developed by 
Michael Böhlen for this course 

(See http://www.inf.unibz.it/dis/teaching/DSA/)

• The slides also include a number of additions made by 
Roberto Sebastiani and Kurt Ranalter when they taught 
later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)
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– Red-Black Trees
• Properties
• Rotations 
• Insertion
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Dictionaries

A dictionary D is a dynamic data structure containing 
elements with a key and a data field

A dictionary allows the operations:
– search(k) 
       returns (a pointer to) an element x in D
    such that x.key = k  
                  (and returns null otherwise)
– insert(x) 
       adds the element (pointed to by) x to D
– delete(x) 
       removes the element (pointed to by) x from D
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Ordered Dictionaries
A dictionary D may have keys that are comparable 

(ordered domain)

In addition to the standard dictionary operations, 
we want to support the operations:

– min()
– max()

and
– predecessor(x)
– successor(x)
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A List-based Implementation

Unordered list
 

– search, min, max, predecessor, successor: O(n)
– insert, delete: O(1)

Ordered list
 

– search, insert: O(n)
– min, max, predecessor, successor, delete:  O(1)

What kind of list is needed to allow for O(1) deletions?

34 14 12 22 18

12 14 18 22 34
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Refresher: Binary Search
• Narrow down the search range in stages

– findElement(22)
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Run Time of Binary Search
• The range of candidate items to be searched is halved 

after comparing the key with the middle element
è binary search on arrays runs in O(log n) time

• What about insertion and deletion?
– search: O(log n)
– min, max, predecessor, successor:  O(1)
– insert, delete: O(n)

• Challenge: implement insert and delete in O(log n)
• Idea: extended binary search to dynamic data structures 

è binary trees
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Binary Trees (Java)
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class Tree {
  Node root;
}

class Node {
  int key;
  Data data;
  Node left;
  Node right;
  Node parent;
}

class Tree {
  Node root;
}

class Node {
  int key;
  Data data;
  Node left;
  Node right;
  Node parent;
}

In what follows we ignore the data field of nodes
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Binary Search Trees
A binary search tree (BST) is a binary tree T 
with the following properties:

– each internal node stores an item (k,d) of a dictionary
– keys stored at nodes in the left subtree of x 

are less than or equal to k
– keys stored at nodes in the right subtree of x 

are greater than or equal to k
 

Example BSTs for 2, 3, 5, 5, 7, 8 2

3

7
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DSA, Chapter 6: Overview

– Binary Search Trees
• Tree traversals
• Searching 
• Insertion
• Deletion

– Red-Black Trees
• Properties
• Rotations 
• Insertion
• Deletion
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Tree Walks
Keys in a BST can be printed using “tree walks”
 

Option 1: Print the keys of each node 
                between the keys in the left and right subtree 
  

è inorder tree traversal

inorderTreeWalk(Node x)
     if x * NULL then
        inorderTreeWalk(x.left)
        print x.key
        inorderTreeWalk(x.right)

inorderTreeWalk(Node x)
     if x * NULL then
        inorderTreeWalk(x.left)
        print x.key
        inorderTreeWalk(x.right)
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Tree Walks/2

• inorderTreeWalk is a divide-and-conquer algorithm

• It prints all elements in monotonically increasing order

• Running time Θ(n)
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Tree Walks/3

inorderTreeWalk can be thought of as 
a projection of the BST nodes 

onto a one-dimensional interval

5

3
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10

10 1175532
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Other Forms of Tree Walk
A preorder tree walk processes 

each node 
before processing its children

preorderTreeWalk(Node x)
     if x * NULL then
        print x.key
        preorderTreeWalk(x.left)
        preorderTreeWalk(x.right)

preorderTreeWalk(Node x)
     if x * NULL then
        print x.key
        preorderTreeWalk(x.left)
        preorderTreeWalk(x.right)
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Other Forms of Tree Walk/2
A postorder tree walk processes 

each node 
after processing its children

postorderTreeWalk(Node x)
     if x * NULL then
        postorderTreeWalk(x.left)
        postorderTreeWalk(x.right)
        print x.key

postorderTreeWalk(Node x)
     if x * NULL then
        postorderTreeWalk(x.left)
        postorderTreeWalk(x.right)
        print x.key
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DSA, Chapter 6: Overview

– Binary Search Trees
• Tree traversals
• Searching 
• Insertion
• Deletion

– Red-Black Trees
• Properties
• Rotations 
• Insertion
• Deletion
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Search Examples

• search(x, 11)
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Search Examples/2

• Search(x, 6)
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Pseudocode for BST Search

Recursive version: divide-and-conquer

 

Node search(int k)
   return nodeSearch(root,k)

Node nodeSearch(Node n, int k)
   if n = NULL or n.key = k 
     then return n
   if k < n.key 
     then return nodeSearch(n.left,k)
     else return nodeSearch(n.right,k)

Node search(int k)
   return nodeSearch(root,k)

Node nodeSearch(Node n, int k)
   if n = NULL or n.key = k 
     then return n
   if k < n.key 
     then return nodeSearch(n.left,k)
     else return nodeSearch(n.right,k)
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Pseudocode for BST Search

Iterative version 

What is the loop invariant here?

 

Node search(int k)
   return nodeSearch(root,k)

Node nodeSearch(Node n, int k)
   curr := n
   while curr * NULL and curr.key * k do 
     if k < curr.key 
       then curr := curr.left
       else curr := curr.right
   return curr

Node search(int k)
   return nodeSearch(root,k)

Node nodeSearch(Node n, int k)
   curr := n
   while curr * NULL and curr.key * k do 
     if k < curr.key 
       then curr := curr.left
       else curr := curr.right
   return curr
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Analysis of Search
• Running time on a tree of height h is O(h)
• After the insertion of n keys, 

the worst-case running time of searching is O(n)

3

5

7

11
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Searching a BST

To find an element with key k in the tree rooted at node n
– compare k with n.key
– if k < n.key, search for k in n.left
– otherwise, search for k in n.right

5
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BST Search

A call search(k) returns one node with key k.
 

If the tree contains several such nodes, 
it returns the node at the lowest level (i.e., highest up).
 

Alternatively, we may want the leftmost node 
(wrt inorder traversal) with key k.
 

Starting from that node, we can retrieve all nodes with key k 
by iteratively through the successors wrt inorder traversal
(provided we have a method to do so).

What is the loop invariant here?
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Finding the First Node with a Given Key 
Idea: Keep the leftmost node with key k found so far 
         as a candidate

    Why does this work?

 

Node findFirst(int k)
     return findFirstAux(root, k, null)

Node findFirstAux(Node n, int k, Node cand)
    if n = null
        then return cand
    elsif k = n.key
        then return findFirstAux(n.left, k, n)
    elsif k < n.key 
        then return findFirstAux(n.left, k, cand)
        else return findFirstAux(n.right, k, cand)

Node findFirst(int k)
     return findFirstAux(root, k, null)

Node findFirstAux(Node n, int k, Node cand)
    if n = null
        then return cand
    elsif k = n.key
        then return findFirstAux(n.left, k, n)
    elsif k < n.key 
        then return findFirstAux(n.left, k, cand)
        else return findFirstAux(n.right, k, cand)

Idea: Keep the leftmost node with key k found so far 
         as a candidate

    Why does this work?
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Correctness of findFirst 

The call

     findFirstAux(Node n, int k, Node cand)

returns
– the leftmost node with key k in the subtree rooted at n,

if there is such a node
– cand otherwise

This follows by induction over the structure of trees …  
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Correctness of findFirst/2 

Induction, base case:
If the tree rooted at n is empty,  there is no node with key k.
The method has to return cand, which it does.
 

Inductive step:
If the tree rooted at n is non-empty, there are three cases:

– k = n.key
– k < n.key 
– k > n.key

In the first case, the call returns the leftmost occurrence of k in the 
subtree rooted at n.left, if there is one (induction hypothesis), otherwise,
it returns n. That is, if there is an occurrence to the left of n, then that is
returned, otherwise, n is returned.
In the other cases, a similar argument holds.
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DSA, Chapter 6: Overview

– Binary Search Trees
• Tree traversals
• Searching 
• Insertion
• Deletion

– Red-Black Trees
• Properties
• Rotations 
• Insertion
• Deletion
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BST Insertion Example
Insert 8

5

3

2 5 7 11
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BST Insertion
The basic idea derives from searching:

– construct a node n 
    whose left and right children are NULL 

and insert it into the tree
– find the location in the tree 

      where n belongs to 
(as if searching for n.key), 

– add n there
 

Be careful: When searching, remember the previous node,
because the current node will end up being NULL
 

The running time on a tree of height h is O(h)
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BST Insertion: Recursive Version

void insert(int k)
     Node n := new Node(k)
     if root = NULL 
        then root := n
        else insertAux(k, n, root, NULL)

void insertAux(int k, Node n, Node curr, Node prev)
     if curr = NULL then
        n.parent := prev
        if k < prev.key 
           then prev.left := n
           else prev.right := n
     if k < curr.key
        then insertAux(k, n, curr.left, curr)
        else insertAux(k, n, curr.right, curr)

void insert(int k)
     Node n := new Node(k)
     if root = NULL 
        then root := n
        else insertAux(k, n, root, NULL)

void insertAux(int k, Node n, Node curr, Node prev)
     if curr = NULL then
        n.parent := prev
        if k < prev.key 
           then prev.left := n
           else prev.right := n
     if k < curr.key
        then insertAux(k, n, curr.left, curr)
        else insertAux(k, n, curr.right, curr)
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BST Insertion: Iterative Version

void insert(int k)
     Node n := new Node(k) 
     if root = null then root := n
     else 
        curr := root
        prev := null
        while curr != null do
           prev := curr
           if k < curr.key 
              then curr := curr.left
              else curr := curr.right
        n.parent := prev
        if k < prev.key 
           then prev.left := n
           else prev.right := n

void insert(int k)
     Node n := new Node(k) 
     if root = null then root := n
     else 
        curr := root
        prev := null
        while curr != null do
           prev := curr
           if k < curr.key 
              then curr := curr.left
              else curr := curr.right
        n.parent := prev
        if k < prev.key 
           then prev.left := n
           else prev.right := n
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BST Insertion: Worst Case
In which order must the insertions be made 
to produce a BST of height n?

A

B

C

D
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BST Sorting/2
Sort the  numbers             
                                     5 10 7 1 3 1 8
• Build a binary search tree

• Call inorderTreeWalk
                                        1 1 3 5 7 8 10
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5
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BST Sorting
Sort an array A of n elements
using insert and a version of inorderTreeWalk 
that inserts node keys into an array
                                  (instead of printing them)

We assume a constructor
 Tree()      that produces an empty tree

void treeSort(A)
   T := new Tree() // a new empty tree
   for i := 1 to A.length do
     T.insert(A[i])
   T.inorderTreeWalkPrintToArray(A)

void treeSort(A)
   T := new Tree() // a new empty tree
   for i := 1 to A.length do
     T.insert(A[i])
   T.inorderTreeWalkPrintToArray(A)
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Printing a Tree onto an Array
Tricky, because we do not know where to print the root ...

void inorderTreeWalkPrintToArray(A)
     ioAux(root,A,1)

int ioAux(Node n, A, int start)
     // starts to print at position start
     // reports where to continue printing
     if n = NULL then
        return start
     else 
        nodePos := ioAux(n.left, A, start)

      A[nodePos] := n.key
      return ioAux(n.right, A, nodePos+1)

void inorderTreeWalkPrintToArray(A)
     ioAux(root,A,1)

int ioAux(Node n, A, int start)
     // starts to print at position start
     // reports where to continue printing
     if n = NULL then
        return start
     else 
        nodePos := ioAux(n.left, A, start)

      A[nodePos] := n.key
      return ioAux(n.right, A, nodePos+1)
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DSA, Chapter 6: Overview

– Binary Search Trees
• Tree traversals
• Searching 
• Insertion
• Deletion

– Red-Black Trees
• Properties
• Rotations 
• Insertion
• Deletion
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BST Minimum (Maximum)
Find the node with the minimum key 
in the tree rooted at node x
• That is, the leftmost node in the tree, 

which can be found by walking down 
along the left child axis as long as possible

• Maximum: walk down the right child axis, instead
• Running time is O(h), 

i.e., proportional to the height of the tree.

minNode(Node n)
   while n.left * NULL do
     n '( n.left
   return n

minNode(Node n)
   while n.left * NULL do
     n '( n.left
   return n
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Successor
Given node x, find the node with the smallest key 

      greater than x.key
 

• We distinguish two cases, 
depending on the right subtree of x

 

• Case 1: The right subtree of x is non-empty 
(succ(x) inserted after x)
– successor is the 

minimal node
in the right subtree

– found by returning 
minNode(x.right)

1

1
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5

10
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8

x

succ(x)
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Successor/2
• Case 2: the right subtree of x is empty 

(succ(x), if any, was inserted before x)
– The successor (if any) is the lowest ancestor of x 

whose left subtree contains x

 

– Can be found by tracing parent pointers until the 
current node is the left child of its parent:
return the parent

1

1
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10
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8

x

succ(x)
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Successor Pseudocode

For a tree of height h, the running time is O(h)
Note: no comparison among keys needed,
          since we have parent pointers!

successor(Node x)
   if x.right * NULL
     then return minNode(x.right)
   y := x
   while y.parent * NULL and 
    y = y.parent.right
     y := y.parent
   return y.parent

successor(Node x)
   if x.right * NULL
     then return minNode(x.right)
   y := x
   while y.parent * NULL and 
    y = y.parent.right
     y := y.parent
   return y.parent
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Successor with Trailing Pointer
Idea: Introduce yp to avoid derefencing y.parent

successor(Node x)
   if x.right * NULL
     then return minNode(x.right)
    y := x
   yp := y.parent
   while yp * NULL and y = yp.right do
      y := yp
     yp := y.parent
   return yp

successor(Node x)
   if x.right * NULL
     then return minNode(x.right)
    y := x
   yp := y.parent
   while yp * NULL and y = yp.right do
      y := yp
     yp := y.parent
   return yp
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Deletion
Delete node x from a tree T

We distinguish three cases
– x has no child
– x has one child
– x has two children
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Deletion Case 1
If x has no children: 
    make the parent of x point to NULL 
    (x will be removed by the garbage collector)

D

FA

B

D

A F

x
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Deletion Case 2
If x has exactly one child: 
    make the parent of x point to that child 
    

D

FA

B

D

B F

x
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Deletion Case 3
• If x has two children: 

– find the largest child y 
in the left subtree of x 
(i.e., y is predecessor(x))

– recursively remove y 
(note that y has at most 
one child), and

– replace x with y.
• “Mirror” version with 

successor(x) [CLRS]

D

FA

B

B

A F

x

y
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The Logic of Deletion
• One node is dropped

– n, if it has at most one child, otherwise, successor(n) 
Call the node to be dropped:  drop

• One node is (possibly) kept, the child of drop: keep
• Node keep takes on the child role of drop

– drop’s parent becomes keep’s parent
– if drop is a left/right child of its parent, 

       then keep becomes a left/right child
– if drop has no parent, it becomes the root

• If successor(n) is dropped instead of n, 
   then successor(n)’s content is copied to n

• For trees without parent pointers, 
we have to find the parent of drop 
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BST Deletion Pseudocode
void delete(Node n)
  if n.left = NULL or n.right = NULL
     then drop := n
     else drop := successor(n)
  if drop.left * NULL
     then keep := drop.left
     else keep := drop.right
  if keep * NULL
     then keep.parent := drop.parent
  if drop.parent = NULL
     then root := keep
     else if drop = drop.parent.left
          then drop.parent.left := keep

        else drop.parent.right := keep
  if drop * n
     then n.key := drop.key
     //   n.data := drop.data

void delete(Node n)
  if n.left = NULL or n.right = NULL
     then drop := n
     else drop := successor(n)
  if drop.left * NULL
     then keep := drop.left
     else keep := drop.right
  if keep * NULL
     then keep.parent := drop.parent
  if drop.parent = NULL
     then root := keep
     else if drop = drop.parent.left
          then drop.parent.left := keep

        else drop.parent.right := keep
  if drop * n
     then n.key := drop.key
     //   n.data := drop.data

 

Version with 
parent pointer

 

Version with 
parent pointer
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Avoid Copying
• Instead of copying the content of successor(n) into n,

we can replace n with successor(n).
After that, we have to restructure the tree.

• There are two cases: 
– successor(n) = n.right, or 
– successor(n) != n.right

Note that always successor(n).left = NULL
• First case:

– successor(n).left := n.left
• Second case:

– parent(successor(n)).left := successor(n).right 
– successor(n).right := n.right
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BST Deletion Code (Java)

void delete(Node n) {
  
  front = root; rear = NULL;
  while (front != n) {
    rear := front;
    if (n.key < front.key) 
       front := front.left;
    else front := front.right;
  } // rear points to the parent of n (if it exists)
  …

void delete(Node n) {
  
  front = root; rear = NULL;
  while (front != n) {
    rear := front;
    if (n.key < front.key) 
       front := front.left;
    else front := front.right;
  } // rear points to the parent of n (if it exists)
  …

● Java method for class Tree
● Version without “parent” field
● Note the trailing pointer technique
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BST Deletion Code (Java)/2

…
  if (n.right == NULL) {
    if (rear == NULL) root = n.left; 
    else if (rear.left == n) rear.left = n.left;
    else rear.right = n.left;}
  else if (n.left == NULL) {
    if (rear == NULL) root = n.right;
    else if (rear.left == n) rear.left = n.right;
    else rear.right = n.right;
  else {
…

…
  if (n.right == NULL) {
    if (rear == NULL) root = n.left; 
    else if (rear.left == n) rear.left = n.left;
    else rear.right = n.left;}
  else if (n.left == NULL) {
    if (rear == NULL) root = n.right;
    else if (rear.left == n) rear.left = n.right;
    else rear.right = n.right;
  else {
…

• x has less than 2 children
• fix pointer of parent of x
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BST Deletion Code (Java)/3

succ = n.right; srear = n.right;
while (succ.left != NULL) 

    { srear:=succ; succ:=succ.left; }

if (rear == NULL) root = succ;
else if (rear.left == n) rear.left = succ;
else rear.right = succ;

succ.left = n.left;
if (srear != succ) {
  srear.left = succ.right;
  succ.right = n.right;
}

succ = n.right; srear = n.right;
while (succ.left != NULL) 

    { srear:=succ; succ:=succ.left; }

if (rear == NULL) root = succ;
else if (rear.left == n) rear.left = succ;
else rear.right = succ;

succ.left = n.left;
if (srear != succ) {
  srear.left = succ.right;
  succ.right = n.right;
}

• n has 2 children
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Balanced Binary Search Trees
• Problem: execution time for tree operations is Θ(h), 

which in worst case is Θ(n)
• Solution: balanced search trees guarantee 

small height h = O(log n)

5

3

2 5

7

8

2

3

7
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Suggested Exercises
Implement a class of binary search trees 
with the following methods: 
• max, min, successor, predecessor 
• search (iterative & recursive), insert
• count (returns number of nodes)
• sum (returns sum of keys)
• minLeafDepth (returns minimal depth of a null leaf)

maxLeafDepth
• delete (swap with successor and predecessor)
• print, print in reverse order
• treeSort 



Master Informatique 																																		56Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Suggested Exercises/2
Develop methods that compute the following:
• sum of all keys
• average of all keys
• the maximum/minimum of all keys 

(provided the tree is nonempty)
 
For trees without parent pointers, develop methods that 
compute the parent of a node for the two cases that
• the keys are unique and the tree is a BST
• the tree is not a BST
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Suggested Exercises/3
Develop methods that compute the following:
• the deepest node (i.e., the node with the longest path from 

the root)
• the leftmost deepest node, if there are several with the 

maximal depth

Develop methods that check 
• whether a tree is complete (i.e., all levels up to the height 

of the tree are filled)
• whether a tree is nearly complete (like the heaps in 

Heapsort)
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Suggested Exercises/3
Using paper & pencil: 
• Draw the trees after each of the following operations, 

starting from an empty tree: 
– insert  9,5,3,7,2,4,6,8,13,11,15,10,12,16,14
– delete 16, 15, 5, 7, 9 

(both with successor and predecessor strategies)
• Simulate the following operations after the above:

– Find the max and minimum
– Find the successor of 9, 8, 6
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DSA, Chapter 6: Overview

– Binary Search Trees
• Tree traversals
• Searching 
• Insertion
• Deletion

– Red-Black Trees
• Properties
• Rotations 
• Insertion
• Deletion
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Java's TreeMap
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DSA, Chapter 6: Overview

– Binary Search Trees
• Tree traversals
• Searching 
• Insertion
• Deletion

– Red-Black Trees
• Properties
• Rotations 
• Insertion
• Deletion
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Red/Black Trees

A red-black tree is a binary search tree 
with the following properties:
1. Nodes are colored red or black
2. NULL leaves are black
3. The root is black
4. No two consecutive

red nodes on any 
root-leaf path

5. Same number of black 
nodes on any root-leaf 
path (called black height 
of the tree)
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RB-Tree Properties

Some measures
– n – # of internal nodes
– h – height
– bh – black height

• 2bh – 1  ) n
• h/2  ) bh
• 2h/2  ) n +1
• h ) 2 log(n +1)
 èbalanced!
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RB-Tree Properties/2
• Operations on a binary-search tree 

(search, insert, delete, ...) 
can be accomplished in O(h) time
 

• The RB-tree is a binary search tree, 
whose height is bounded by 2 log(n +1), 
thus the operations run in O(log n)

Provided that we can maintain 
the red-black tree properties 
spending no more than O(h) time 
on each insertion or deletion



Master Informatique 																																		65Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

DSA, Chapter 6: Overview

– Binary Search Trees
• Tree traversals
• Searching 
• Insertion
• Deletion

– Red-Black Trees
• Properties
• Rotations 
• Insertion
• Deletion
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Rotation

α β

γ α

β γ

B

A

A

B

right rotation of B left rotation of A
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Right Rotation
RightRotate(Node B)
   A := B.left

   B.left := A.right
   B.left.parent := B

   if (B = B.parent.left) then B.parent.left := A
   if (B = B.parent.right) then B.parent.right := A
   A.parent := B.parent

   A.right := B
   B.parent := A 

α β

γ α

β γ

B A
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The Effect of a Rotation 

• Maintains inorder key ordering
  For all a∈$  & b∈%  & c∈γ

    rotation maintains the invariant (for the keys)
a ≤ A ≤ b ≤ B ≤ c
 

• After right rotation
– depth(α) decreases by 1
– depth(β) stays the same
– depth(γ) increases by 1

 

• Left rotation: symmetric
 

• Rotation takes O(1) time
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DSA, Chapter 6: Overview

– Binary Search Trees
• Tree traversals
• Searching 
• Insertion
• Deletion

– Red-Black Trees
• Properties
• Rotations 
• Insertion
• Deletion
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Insertion in the RB-Trees

n

pp

n

rBInsert(RBTree t, RBNode n)
   Insert n into t using 

the binary search tree insertion procedure
   n.left := NULL
   n.right := NULL
   n.color := red
   rBInsertFixup(n)

rBInsert(RBTree t, RBNode n)
   Insert n into t using 

the binary search tree insertion procedure
   n.left := NULL
   n.right := NULL
   n.color := red
   rBInsertFixup(n)
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Fixing Up a Node: Intuition
Case 0: parent is black 
    è ok
Case 1: both parent and uncle are red
    è change colour of parent/uncle to black
    è change colour of grandparent to red
    è fix up the grandparent

Exception: grandparent is root è then keep it black
Case 2: parent is red and uncle is black, and
              node and parent are in a straight line
    è rotate at grandparent 
Case 3: parent is red and uncle is black, and
             node and parent are not in a straight line
    è rotate at parent  (leads to Case 2)
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Insertion

Let
n = the new node
p = n.parent 
g = p.parent
 

In the following assume
p = g.left

g

p

n
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Insertion: Case 0

Case 0:   p.color = black
– No properties 

of the tree 
are violated

– We are done

g

p

n
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Insertion: Case 1

Case 1:   n’s uncle u is red
– Action
p.color := black
u.color := black
g.color := red
n :=  g

– Note: the tree rooted at g is balanced enough 
(black depth of all descendants remains 
unchanged)

g

p

n n

p

g

uu
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Insertion: Case 2

Case 2:  n’s uncle u is black 
          and n is a left child

– Action
p.color := black
g.color := red
RightRotate(g)

– Note: the tree rooted at g is balanced enough 
(black depth of all descendents remains 
unchanged).

g

p

n

n

p

gu

u
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Insertion: Case 3

Case 3: n’s uncle u is black 
         and n is a right child

– Action
LeftRotate(p)

n := p

– Note: The result is a Case 2

g

p

n

u

g

n

p

u
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Insertion: Mirror Cases

• All three cases are handled analogously 
if p is a right child

• Exchange left and right 
in all three cases
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Insertion: Case 2 and 3 Mirrored
Case 2m: n’s uncle u is black and n is a right child
– Action
p.color := black
g.color := red
LeftRotate(g)
 

Case 3m: n’s uncle u is black and n is a left child
– Action
RightRotate(p)
n := p
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Insertion Summary

• If two red nodes are adjacent, we perform either 
– a restructuring (with one or two rotations) 

and stop (cases 2 and 3), or
– recursively propagate red upward (case 1)

• A restructuring takes constant time 
and is performed at most once; 
it reorganizes an off-balanced section of the tree

• Propagations may continue up the tree and 
are executed  O(log n) times (height of the tree)

• The running time of an insertion is O(log n)
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An Insertion Example
Insert "REDSOX" into an empty tree

Now, let us insert "CUBS"

R

E

D

O S

X
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Insert C (Case 0)

R

E

D

O S

X

R

E

D

O S

X

C
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Insert U (Case 3, Mirror)

R

E

D

O S

X

C

R

E

D

O S

X

C

U
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Insert U/2

R

E

D

O S

X

C

U

R

E

D

O

S X

C U
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Insert B (Case 2)

R

E

D

O

S X

C U

R

E

D

O

S X

C U

B
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Insert B/2

R

E

D

O

S X

C U

B

R

E

C

O

S X

B UD
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Insert S (Case 1)

R

E

C

O

S X

B UD

R

E

C

O

S X

B UD

S
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Insert S/2 (Case 2 Mirror) 

R

E

C

O

S X

B UD

S

U

R

E

S

B S

C XO

D
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DSA, Chapter 6: Overview

– Binary Search Trees
• Tree traversals
• Searching 
• Insertion
• Deletion

– Red-Black Trees
• Properties
• Rotations 
• Insertion
• Deletion



Master Informatique 																																		89Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Deletion
We first apply binary search tree deletion
• We can easily delete a node with at least one NULL child
• If the key to be deleted is stored 

at a node u with two children, 
we replace its content 
with the content of the largest node v of the left subtree

(the predecessor of u) 
and delete v instead

7

4 8

952

5

4 8

92

u u

v
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Deletion Algorithm
1. Remove u
2. If u.color = red we are done;
    else, assume that v (the predecessor of u) 
    gets an additional black color: 

– if v.color = red then v.color = black  
and we are done! 

– else v’ s color is “double black”

u

v
v

u

v
v
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Deletion Algorithm/2
How to eliminate double black edges?

– The intuitive idea is to perform a color compensation
Find a red node nearby, and 
change the pair (red, double black) 
into (black, black)

– Two cases: restructuring and recoloring
– Restructuring resolves the problem locally, while 

recoloring may propagate it upward.
Hereafter we assume v is a left child 

(swap right and left otherwise)  
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Deletion Case 1
Case 1: v’s sibling s is black 
              and both children of s are black
– Action: recoloring
s.color := red
v.color := black
p.color := p.color

         + black

– Note: We reduce the black depth 
of both subtrees of p by 1; 
parent p becomes more black

sv

p p

v s
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Deletion: Case 1

If parent p becomes double black, 
continue upward

sv

p p

v s
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Deletion: Case 2
Case 2: v’s sibling s is black 
              and s’s right child is red 
– Action
s.color = p.color

p.color = black

s.right.color = black

LeftRotate(p)

– Idea: Compensate the extra black ring of v
         by the red of r

– Note: Terminates after restructuring

sv

p

r

rp

s

v
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Deletion: Case 3
Case 3: v’s sibling s is black, s’s left child is red, 
             and s’s right child is black
– Idea: Reduce to Case 2
– Action
s.left.color = black

s.color = red

RightRotation(s)

s = p.right

– Note: This is now Case 2

sv

p

l

 lv

p

s
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Deletion: Case 4
Case 4: v’s sibling s is red
– Idea: give v a black sibling
– Action
s.color = black

p.color = red

LeftRotation(p)

s = p.right

– Note: This is now a Case 1, 2, or 3

sv

p

p

s

v
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Delete 9  

8

6

4

72 95

8

6

4

72 5
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Delete 9/2
• Case 2 (sibling is black with black children) – recoloring 

8

6

4

72 5

8

6

4

72 5
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Delete 8

8

6

4

72 5

7

6

4
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Delete 7: Restructuring

7

6

4

2 5

6

4

2 5

6

4

2

5
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How Long Does it Take?
Deletion in a RB-tree takes O(log n)
     Maximum: 

– three rotations and
– O(log n) recolorings
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Suggested Exercises
• Add left-rotate and right-rotate 

to the implementation of your binary trees

• Implement a class of red-black search trees 
with the following methods: 
– (...), insert, delete,  
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Suggested Exercises/2
Using paper and pencil: 
• Draw the RB-trees after each of the following operations, 

starting from an empty tree: 
1. Insert  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
2.Delete  12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

• Try insertions and deletions at random
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Other Balanced Trees

• Red-Black trees 
are related 
to 2-3-4 trees 
(non-binary)

• AVL-trees have 
simpler algorithms, 
but may perform 
a lot of rotations

2-3-4               Red-Black



Master Informatique 																																		105Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Next Part
• Hashing


