
Master Informatique 																																		1Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Data Structures and Algorithms

 Chapter 6

Binary Search Trees

Werner Nutt

Master Informatique 																																		2Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Acknowledgments
• The course follows the book “Introduction to Algorithms‘”,

by Cormen, Leiserson, Rivest and Stein, MIT Press
[CLRST]. Many examples displayed in these slides are
taken from their book

• These slides are based on those developed by
Michael Böhlen for this course

(See http://www.inf.unibz.it/dis/teaching/DSA/)

• The slides also include a number of additions made by
Roberto Sebastiani and Kurt Ranalter when they taught
later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)

Master Informatique 																																		3Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

DSA, Chapter 6: Overview

– Binary Search Trees
• Tree traversals
• Searching
• Insertion
• Deletion

– Red-Black Trees
• Properties
• Rotations
• Insertion
• Deletion

Master Informatique 																																		4Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

DSA, Chapter 6: Overview

– Binary Search Trees
• Tree traversals
• Searching
• Insertion
• Deletion

– Red-Black Trees
• Properties
• Rotations
• Insertion
• Deletion

Master Informatique 																																		5Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Dictionaries

A dictionary D is a dynamic data structure containing
elements with a key and a data field

A dictionary allows the operations:
– search(k)
 returns (a pointer to) an element x in D
 such that x.key = k
 (and returns null otherwise)
– insert(x)
 adds the element (pointed to by) x to D
– delete(x)
 removes the element (pointed to by) x from D

Master Informatique 																																		6Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Ordered Dictionaries
A dictionary D may have keys that are comparable

(ordered domain)

In addition to the standard dictionary operations,
we want to support the operations:

– min()
– max()

and
– predecessor(x)
– successor(x)

Master Informatique 																																		7Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

A List-based Implementation

Unordered list

– search, min, max, predecessor, successor: O(n)
– insert, delete: O(1)

Ordered list

– search, insert: O(n)
– min, max, predecessor, successor, delete: O(1)

What kind of list is needed to allow for O(1) deletions?

34 14 12 22 18

12 14 18 22 34

Master Informatique 																																		8Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Refresher: Binary Search
• Narrow down the search range in stages

– findElement(22)

Master Informatique 																																		9Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Run Time of Binary Search
• The range of candidate items to be searched is halved

after comparing the key with the middle element
è binary search on arrays runs in O(log n) time

• What about insertion and deletion?
– search: O(log n)
– min, max, predecessor, successor: O(1)
– insert, delete: O(n)

• Challenge: implement insert and delete in O(log n)
• Idea: extended binary search to dynamic data structures

è binary trees

Master Informatique 																																		10Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Binary Trees (Java)

12

+

+ +

+ +

+

++++

root

23 8

7151

6911

5

7

class Tree {
 Node root;
}

class Node {
 int key;
 Data data;
 Node left;
 Node right;
 Node parent;
}

class Tree {
 Node root;
}

class Node {
 int key;
 Data data;
 Node left;
 Node right;
 Node parent;
}

In what follows we ignore the data field of nodes

Master Informatique 																																		11Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Binary Search Trees
A binary search tree (BST) is a binary tree T
with the following properties:

– each internal node stores an item (k,d) of a dictionary
– keys stored at nodes in the left subtree of x

are less than or equal to k
– keys stored at nodes in the right subtree of x

are greater than or equal to k

Example BSTs for 2, 3, 5, 5, 7, 8 2

3

7

85

5

5

3

2 5

7

8

Master Informatique 																																		12Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

DSA, Chapter 6: Overview

– Binary Search Trees
• Tree traversals
• Searching
• Insertion
• Deletion

– Red-Black Trees
• Properties
• Rotations
• Insertion
• Deletion

Master Informatique 																																		13Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Tree Walks
Keys in a BST can be printed using “tree walks”

Option 1: Print the keys of each node
 between the keys in the left and right subtree

è inorder tree traversal

inorderTreeWalk(Node x)
 if x * NULL then
 inorderTreeWalk(x.left)
 print x.key
 inorderTreeWalk(x.right)

inorderTreeWalk(Node x)
 if x * NULL then
 inorderTreeWalk(x.left)
 print x.key
 inorderTreeWalk(x.right)

Master Informatique 																																		14Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Tree Walks/2

• inorderTreeWalk is a divide-and-conquer algorithm

• It prints all elements in monotonically increasing order

• Running time Θ(n)

Master Informatique 																																		15Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Tree Walks/3

inorderTreeWalk can be thought of as
a projection of the BST nodes

onto a one-dimensional interval

5

3

2 5 7 11

10

10 1175532

Master Informatique 																																		16Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Other Forms of Tree Walk
A preorder tree walk processes

each node
before processing its children

preorderTreeWalk(Node x)
 if x * NULL then
 print x.key
 preorderTreeWalk(x.left)
 preorderTreeWalk(x.right)

preorderTreeWalk(Node x)
 if x * NULL then
 print x.key
 preorderTreeWalk(x.left)
 preorderTreeWalk(x.right)

Master Informatique 																																		17Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Other Forms of Tree Walk/2
A postorder tree walk processes

each node
after processing its children

postorderTreeWalk(Node x)
 if x * NULL then
 postorderTreeWalk(x.left)
 postorderTreeWalk(x.right)
 print x.key

postorderTreeWalk(Node x)
 if x * NULL then
 postorderTreeWalk(x.left)
 postorderTreeWalk(x.right)
 print x.key

Master Informatique 																																		18Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

DSA, Chapter 6: Overview

– Binary Search Trees
• Tree traversals
• Searching
• Insertion
• Deletion

– Red-Black Trees
• Properties
• Rotations
• Insertion
• Deletion

Master Informatique 																																		19Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Search Examples

• search(x, 11)

5

3

2 5 7 11

10

4

Master Informatique 																																		20Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Search Examples/2

• Search(x, 6)

5

3

2 5 7 11

10

4

Master Informatique 																																		21Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Pseudocode for BST Search

Recursive version: divide-and-conquer

Node search(int k)
 return nodeSearch(root,k)

Node nodeSearch(Node n, int k)
 if n = NULL or n.key = k
 then return n
 if k < n.key
 then return nodeSearch(n.left,k)
 else return nodeSearch(n.right,k)

Node search(int k)
 return nodeSearch(root,k)

Node nodeSearch(Node n, int k)
 if n = NULL or n.key = k
 then return n
 if k < n.key
 then return nodeSearch(n.left,k)
 else return nodeSearch(n.right,k)

Master Informatique 																																		22Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Pseudocode for BST Search

Iterative version

What is the loop invariant here?

Node search(int k)
 return nodeSearch(root,k)

Node nodeSearch(Node n, int k)
 curr := n
 while curr * NULL and curr.key * k do
 if k < curr.key
 then curr := curr.left
 else curr := curr.right
 return curr

Node search(int k)
 return nodeSearch(root,k)

Node nodeSearch(Node n, int k)
 curr := n
 while curr * NULL and curr.key * k do
 if k < curr.key
 then curr := curr.left
 else curr := curr.right
 return curr

Master Informatique 																																		23Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Analysis of Search
• Running time on a tree of height h is O(h)
• After the insertion of n keys,

the worst-case running time of searching is O(n)

3

5

7

11

Master Informatique 																																		24Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Searching a BST

To find an element with key k in the tree rooted at node n
– compare k with n.key
– if k < n.key, search for k in n.left
– otherwise, search for k in n.right

5

3

2 5 7 11

10

4

Master Informatique 																																		25Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

BST Search

A call search(k) returns one node with key k.

If the tree contains several such nodes,
it returns the node at the lowest level (i.e., highest up).

Alternatively, we may want the leftmost node
(wrt inorder traversal) with key k.

Starting from that node, we can retrieve all nodes with key k
by iteratively through the successors wrt inorder traversal
(provided we have a method to do so).

What is the loop invariant here?

Master Informatique 																																		26Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Finding the First Node with a Given Key
Idea: Keep the leftmost node with key k found so far
 as a candidate

 Why does this work?

Node findFirst(int k)
 return findFirstAux(root, k, null)

Node findFirstAux(Node n, int k, Node cand)
 if n = null
 then return cand
 elsif k = n.key
 then return findFirstAux(n.left, k, n)
 elsif k < n.key
 then return findFirstAux(n.left, k, cand)
 else return findFirstAux(n.right, k, cand)

Node findFirst(int k)
 return findFirstAux(root, k, null)

Node findFirstAux(Node n, int k, Node cand)
 if n = null
 then return cand
 elsif k = n.key
 then return findFirstAux(n.left, k, n)
 elsif k < n.key
 then return findFirstAux(n.left, k, cand)
 else return findFirstAux(n.right, k, cand)

Idea: Keep the leftmost node with key k found so far
 as a candidate

 Why does this work?

Master Informatique 																																		27Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Correctness of findFirst

The call

 findFirstAux(Node n, int k, Node cand)

returns
– the leftmost node with key k in the subtree rooted at n,

if there is such a node
– cand otherwise

This follows by induction over the structure of trees …

Master Informatique 																																		28Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Correctness of findFirst/2

Induction, base case:
If the tree rooted at n is empty, there is no node with key k.
The method has to return cand, which it does.

Inductive step:
If the tree rooted at n is non-empty, there are three cases:

– k = n.key
– k < n.key
– k > n.key

In the first case, the call returns the leftmost occurrence of k in the
subtree rooted at n.left, if there is one (induction hypothesis), otherwise,
it returns n. That is, if there is an occurrence to the left of n, then that is
returned, otherwise, n is returned.
In the other cases, a similar argument holds.

Master Informatique 																																		29Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

DSA, Chapter 6: Overview

– Binary Search Trees
• Tree traversals
• Searching
• Insertion
• Deletion

– Red-Black Trees
• Properties
• Rotations
• Insertion
• Deletion

Master Informatique 																																		30Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

BST Insertion Example
Insert 8

5

3

2 5 7 11

10

4 8

Master Informatique 																																		31Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

BST Insertion
The basic idea derives from searching:

– construct a node n
 whose left and right children are NULL

and insert it into the tree
– find the location in the tree

 where n belongs to
(as if searching for n.key),

– add n there

Be careful: When searching, remember the previous node,
because the current node will end up being NULL

The running time on a tree of height h is O(h)

Master Informatique 																																		32Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

BST Insertion: Recursive Version

void insert(int k)
 Node n := new Node(k)
 if root = NULL
 then root := n
 else insertAux(k, n, root, NULL)

void insertAux(int k, Node n, Node curr, Node prev)
 if curr = NULL then
 n.parent := prev
 if k < prev.key
 then prev.left := n
 else prev.right := n
 if k < curr.key
 then insertAux(k, n, curr.left, curr)
 else insertAux(k, n, curr.right, curr)

void insert(int k)
 Node n := new Node(k)
 if root = NULL
 then root := n
 else insertAux(k, n, root, NULL)

void insertAux(int k, Node n, Node curr, Node prev)
 if curr = NULL then
 n.parent := prev
 if k < prev.key
 then prev.left := n
 else prev.right := n
 if k < curr.key
 then insertAux(k, n, curr.left, curr)
 else insertAux(k, n, curr.right, curr)

Master Informatique 																																		33Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

BST Insertion: Iterative Version

void insert(int k)
 Node n := new Node(k)
 if root = null then root := n
 else
 curr := root
 prev := null
 while curr != null do
 prev := curr
 if k < curr.key
 then curr := curr.left
 else curr := curr.right
 n.parent := prev
 if k < prev.key
 then prev.left := n
 else prev.right := n

void insert(int k)
 Node n := new Node(k)
 if root = null then root := n
 else
 curr := root
 prev := null
 while curr != null do
 prev := curr
 if k < curr.key
 then curr := curr.left
 else curr := curr.right
 n.parent := prev
 if k < prev.key
 then prev.left := n
 else prev.right := n

Master Informatique 																																		34Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

BST Insertion: Worst Case
In which order must the insertions be made
to produce a BST of height n?

A

B

C

D

Master Informatique 																																		35Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

BST Sorting/2
Sort the numbers
 5 10 7 1 3 1 8
• Build a binary search tree

• Call inorderTreeWalk
 1 1 3 5 7 8 10

5

1

3 7

8

10

1

5
5

10
10

5

7

Master Informatique 																																		36Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

BST Sorting
Sort an array A of n elements
using insert and a version of inorderTreeWalk
that inserts node keys into an array
 (instead of printing them)

We assume a constructor
 Tree() that produces an empty tree

void treeSort(A)
 T := new Tree() // a new empty tree
 for i := 1 to A.length do
 T.insert(A[i])
 T.inorderTreeWalkPrintToArray(A)

void treeSort(A)
 T := new Tree() // a new empty tree
 for i := 1 to A.length do
 T.insert(A[i])
 T.inorderTreeWalkPrintToArray(A)

Master Informatique 																																		37Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Printing a Tree onto an Array
Tricky, because we do not know where to print the root ...

void inorderTreeWalkPrintToArray(A)
 ioAux(root,A,1)

int ioAux(Node n, A, int start)
 // starts to print at position start
 // reports where to continue printing
 if n = NULL then
 return start
 else
 nodePos := ioAux(n.left, A, start)

 A[nodePos] := n.key
 return ioAux(n.right, A, nodePos+1)

void inorderTreeWalkPrintToArray(A)
 ioAux(root,A,1)

int ioAux(Node n, A, int start)
 // starts to print at position start
 // reports where to continue printing
 if n = NULL then
 return start
 else
 nodePos := ioAux(n.left, A, start)

 A[nodePos] := n.key
 return ioAux(n.right, A, nodePos+1)

Master Informatique 																																		38Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

DSA, Chapter 6: Overview

– Binary Search Trees
• Tree traversals
• Searching
• Insertion
• Deletion

– Red-Black Trees
• Properties
• Rotations
• Insertion
• Deletion

Master Informatique 																																		39Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

BST Minimum (Maximum)
Find the node with the minimum key
in the tree rooted at node x
• That is, the leftmost node in the tree,

which can be found by walking down
along the left child axis as long as possible

• Maximum: walk down the right child axis, instead
• Running time is O(h),

i.e., proportional to the height of the tree.

minNode(Node n)
 while n.left * NULL do
 n '(n.left
 return n

minNode(Node n)
 while n.left * NULL do
 n '(n.left
 return n

Master Informatique 																																		40Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Successor
Given node x, find the node with the smallest key

 greater than x.key

• We distinguish two cases,
depending on the right subtree of x

• Case 1: The right subtree of x is non-empty
(succ(x) inserted after x)
– successor is the

minimal node
in the right subtree

– found by returning
minNode(x.right)

1

1

3

5

10

7

8

x

succ(x)

Master Informatique 																																		41Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Successor/2
• Case 2: the right subtree of x is empty

(succ(x), if any, was inserted before x)
– The successor (if any) is the lowest ancestor of x

whose left subtree contains x

– Can be found by tracing parent pointers until the
current node is the left child of its parent:
return the parent

1

1

3

5

10

7

8

x

succ(x)

Master Informatique 																																		42Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Successor Pseudocode

For a tree of height h, the running time is O(h)
Note: no comparison among keys needed,
 since we have parent pointers!

successor(Node x)
 if x.right * NULL
 then return minNode(x.right)
 y := x
 while y.parent * NULL and
 y = y.parent.right
 y := y.parent
 return y.parent

successor(Node x)
 if x.right * NULL
 then return minNode(x.right)
 y := x
 while y.parent * NULL and
 y = y.parent.right
 y := y.parent
 return y.parent

Master Informatique 																																		43Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Successor with Trailing Pointer
Idea: Introduce yp to avoid derefencing y.parent

successor(Node x)
 if x.right * NULL
 then return minNode(x.right)
 y := x
 yp := y.parent
 while yp * NULL and y = yp.right do
 y := yp
 yp := y.parent
 return yp

successor(Node x)
 if x.right * NULL
 then return minNode(x.right)
 y := x
 yp := y.parent
 while yp * NULL and y = yp.right do
 y := yp
 yp := y.parent
 return yp

Master Informatique 																																		44Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Deletion
Delete node x from a tree T

We distinguish three cases
– x has no child
– x has one child
– x has two children

Master Informatique 																																		45Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Deletion Case 1
If x has no children:
 make the parent of x point to NULL
 (x will be removed by the garbage collector)

D

FA

B

D

A F

x

Master Informatique 																																		46Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Deletion Case 2
If x has exactly one child:
 make the parent of x point to that child

D

FA

B

D

B F

x

Master Informatique 																																		47Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Deletion Case 3
• If x has two children:

– find the largest child y
in the left subtree of x
(i.e., y is predecessor(x))

– recursively remove y
(note that y has at most
one child), and

– replace x with y.
• “Mirror” version with

successor(x) [CLRS]

D

FA

B

B

A F

x

y

Master Informatique 																																		48Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

The Logic of Deletion
• One node is dropped

– n, if it has at most one child, otherwise, successor(n)
Call the node to be dropped: drop

• One node is (possibly) kept, the child of drop: keep
• Node keep takes on the child role of drop

– drop’s parent becomes keep’s parent
– if drop is a left/right child of its parent,

 then keep becomes a left/right child
– if drop has no parent, it becomes the root

• If successor(n) is dropped instead of n,
 then successor(n)’s content is copied to n

• For trees without parent pointers,
we have to find the parent of drop

Master Informatique 																																		49Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

BST Deletion Pseudocode
void delete(Node n)
 if n.left = NULL or n.right = NULL
 then drop := n
 else drop := successor(n)
 if drop.left * NULL
 then keep := drop.left
 else keep := drop.right
 if keep * NULL
 then keep.parent := drop.parent
 if drop.parent = NULL
 then root := keep
 else if drop = drop.parent.left
 then drop.parent.left := keep

 else drop.parent.right := keep
 if drop * n
 then n.key := drop.key
 // n.data := drop.data

void delete(Node n)
 if n.left = NULL or n.right = NULL
 then drop := n
 else drop := successor(n)
 if drop.left * NULL
 then keep := drop.left
 else keep := drop.right
 if keep * NULL
 then keep.parent := drop.parent
 if drop.parent = NULL
 then root := keep
 else if drop = drop.parent.left
 then drop.parent.left := keep

 else drop.parent.right := keep
 if drop * n
 then n.key := drop.key
 // n.data := drop.data

Version with
parent pointer

Version with
parent pointer

Master Informatique 																																		50Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Avoid Copying
• Instead of copying the content of successor(n) into n,

we can replace n with successor(n).
After that, we have to restructure the tree.

• There are two cases:
– successor(n) = n.right, or
– successor(n) != n.right

Note that always successor(n).left = NULL
• First case:

– successor(n).left := n.left
• Second case:

– parent(successor(n)).left := successor(n).right
– successor(n).right := n.right

Master Informatique 																																		51Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

BST Deletion Code (Java)

void delete(Node n) {

 front = root; rear = NULL;
 while (front != n) {
 rear := front;
 if (n.key < front.key)
 front := front.left;
 else front := front.right;
 } // rear points to the parent of n (if it exists)
 …

void delete(Node n) {

 front = root; rear = NULL;
 while (front != n) {
 rear := front;
 if (n.key < front.key)
 front := front.left;
 else front := front.right;
 } // rear points to the parent of n (if it exists)
 …

● Java method for class Tree
● Version without “parent” field
● Note the trailing pointer technique

Master Informatique 																																		52Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

BST Deletion Code (Java)/2

…
 if (n.right == NULL) {
 if (rear == NULL) root = n.left;
 else if (rear.left == n) rear.left = n.left;
 else rear.right = n.left;}
 else if (n.left == NULL) {
 if (rear == NULL) root = n.right;
 else if (rear.left == n) rear.left = n.right;
 else rear.right = n.right;
 else {
…

…
 if (n.right == NULL) {
 if (rear == NULL) root = n.left;
 else if (rear.left == n) rear.left = n.left;
 else rear.right = n.left;}
 else if (n.left == NULL) {
 if (rear == NULL) root = n.right;
 else if (rear.left == n) rear.left = n.right;
 else rear.right = n.right;
 else {
…

• x has less than 2 children
• fix pointer of parent of x

Master Informatique 																																		53Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

BST Deletion Code (Java)/3

succ = n.right; srear = n.right;
while (succ.left != NULL)

 { srear:=succ; succ:=succ.left; }

if (rear == NULL) root = succ;
else if (rear.left == n) rear.left = succ;
else rear.right = succ;

succ.left = n.left;
if (srear != succ) {
 srear.left = succ.right;
 succ.right = n.right;
}

succ = n.right; srear = n.right;
while (succ.left != NULL)

 { srear:=succ; succ:=succ.left; }

if (rear == NULL) root = succ;
else if (rear.left == n) rear.left = succ;
else rear.right = succ;

succ.left = n.left;
if (srear != succ) {
 srear.left = succ.right;
 succ.right = n.right;
}

• n has 2 children

Master Informatique 																																		54Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Balanced Binary Search Trees
• Problem: execution time for tree operations is Θ(h),

which in worst case is Θ(n)
• Solution: balanced search trees guarantee

small height h = O(log n)

5

3

2 5

7

8

2

3

7

85

5

Master Informatique 																																		55Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Suggested Exercises
Implement a class of binary search trees
with the following methods:
• max, min, successor, predecessor
• search (iterative & recursive), insert
• count (returns number of nodes)
• sum (returns sum of keys)
• minLeafDepth (returns minimal depth of a null leaf)

maxLeafDepth
• delete (swap with successor and predecessor)
• print, print in reverse order
• treeSort

Master Informatique 																																		56Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Suggested Exercises/2
Develop methods that compute the following:
• sum of all keys
• average of all keys
• the maximum/minimum of all keys

(provided the tree is nonempty)

For trees without parent pointers, develop methods that
compute the parent of a node for the two cases that
• the keys are unique and the tree is a BST
• the tree is not a BST

Master Informatique 																																		57Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Suggested Exercises/3
Develop methods that compute the following:
• the deepest node (i.e., the node with the longest path from

the root)
• the leftmost deepest node, if there are several with the

maximal depth

Develop methods that check
• whether a tree is complete (i.e., all levels up to the height

of the tree are filled)
• whether a tree is nearly complete (like the heaps in

Heapsort)

Master Informatique 																																		58Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Suggested Exercises/3
Using paper & pencil:
• Draw the trees after each of the following operations,

starting from an empty tree:
– insert 9,5,3,7,2,4,6,8,13,11,15,10,12,16,14
– delete 16, 15, 5, 7, 9

(both with successor and predecessor strategies)
• Simulate the following operations after the above:

– Find the max and minimum
– Find the successor of 9, 8, 6

Master Informatique 																																		59Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

DSA, Chapter 6: Overview

– Binary Search Trees
• Tree traversals
• Searching
• Insertion
• Deletion

– Red-Black Trees
• Properties
• Rotations
• Insertion
• Deletion

Master Informatique 																																		60Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Java's TreeMap

Master Informatique 																																		61Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

DSA, Chapter 6: Overview

– Binary Search Trees
• Tree traversals
• Searching
• Insertion
• Deletion

– Red-Black Trees
• Properties
• Rotations
• Insertion
• Deletion

Master Informatique 																																		62Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Red/Black Trees

A red-black tree is a binary search tree
with the following properties:
1. Nodes are colored red or black
2. NULL leaves are black
3. The root is black
4. No two consecutive

red nodes on any
root-leaf path

5. Same number of black
nodes on any root-leaf
path (called black height
of the tree)

Master Informatique 																																		63Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

RB-Tree Properties

Some measures
– n – # of internal nodes
– h – height
– bh – black height

• 2bh – 1) n
• h/2) bh
• 2h/2) n +1
• h) 2 log(n +1)
 èbalanced!

Master Informatique 																																		64Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

RB-Tree Properties/2
• Operations on a binary-search tree

(search, insert, delete, ...)
can be accomplished in O(h) time

• The RB-tree is a binary search tree,
whose height is bounded by 2 log(n +1),
thus the operations run in O(log n)

Provided that we can maintain
the red-black tree properties
spending no more than O(h) time
on each insertion or deletion

Master Informatique 																																		65Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

DSA, Chapter 6: Overview

– Binary Search Trees
• Tree traversals
• Searching
• Insertion
• Deletion

– Red-Black Trees
• Properties
• Rotations
• Insertion
• Deletion

Master Informatique 																																		66Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Rotation

α β

γ α

β γ

B

A

A

B

right rotation of B left rotation of A

Master Informatique 																																		67Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Right Rotation
RightRotate(Node B)
 A := B.left

 B.left := A.right
 B.left.parent := B

 if (B = B.parent.left) then B.parent.left := A
 if (B = B.parent.right) then B.parent.right := A
 A.parent := B.parent

 A.right := B
 B.parent := A

α β

γ α

β γ

B A

Master Informatique 																																		68Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

The Effect of a Rotation

• Maintains inorder key ordering
 For all a∈$ & b∈% & c∈γ

 rotation maintains the invariant (for the keys)
a ≤ A ≤ b ≤ B ≤ c

• After right rotation
– depth(α) decreases by 1
– depth(β) stays the same
– depth(γ) increases by 1

• Left rotation: symmetric

• Rotation takes O(1) time

Master Informatique 																																		69Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

DSA, Chapter 6: Overview

– Binary Search Trees
• Tree traversals
• Searching
• Insertion
• Deletion

– Red-Black Trees
• Properties
• Rotations
• Insertion
• Deletion

Master Informatique 																																		70Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Insertion in the RB-Trees

n

pp

n

rBInsert(RBTree t, RBNode n)
 Insert n into t using

the binary search tree insertion procedure
 n.left := NULL
 n.right := NULL
 n.color := red
 rBInsertFixup(n)

rBInsert(RBTree t, RBNode n)
 Insert n into t using

the binary search tree insertion procedure
 n.left := NULL
 n.right := NULL
 n.color := red
 rBInsertFixup(n)

Master Informatique 																																		71Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Fixing Up a Node: Intuition
Case 0: parent is black
 è ok
Case 1: both parent and uncle are red
 è change colour of parent/uncle to black
 è change colour of grandparent to red
 è fix up the grandparent

Exception: grandparent is root è then keep it black
Case 2: parent is red and uncle is black, and
 node and parent are in a straight line
 è rotate at grandparent
Case 3: parent is red and uncle is black, and
 node and parent are not in a straight line
 è rotate at parent (leads to Case 2)

Master Informatique 																																		72Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Insertion

Let
n = the new node
p = n.parent
g = p.parent

In the following assume
p = g.left

g

p

n

Master Informatique 																																		73Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Insertion: Case 0

Case 0: p.color = black
– No properties

of the tree
are violated

– We are done

g

p

n

Master Informatique 																																		74Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Insertion: Case 1

Case 1: n’s uncle u is red
– Action
p.color := black
u.color := black
g.color := red
n := g

– Note: the tree rooted at g is balanced enough
(black depth of all descendants remains
unchanged)

g

p

n n

p

g

uu

Master Informatique 																																		75Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Insertion: Case 2

Case 2: n’s uncle u is black
 and n is a left child

– Action
p.color := black
g.color := red
RightRotate(g)

– Note: the tree rooted at g is balanced enough
(black depth of all descendents remains
unchanged).

g

p

n

n

p

gu

u

Master Informatique 																																		76Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Insertion: Case 3

Case 3: n’s uncle u is black
 and n is a right child

– Action
LeftRotate(p)

n := p

– Note: The result is a Case 2

g

p

n

u

g

n

p

u

Master Informatique 																																		77Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Insertion: Mirror Cases

• All three cases are handled analogously
if p is a right child

• Exchange left and right
in all three cases

Master Informatique 																																		78Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Insertion: Case 2 and 3 Mirrored
Case 2m: n’s uncle u is black and n is a right child
– Action
p.color := black
g.color := red
LeftRotate(g)

Case 3m: n’s uncle u is black and n is a left child
– Action
RightRotate(p)
n := p

Master Informatique 																																		79Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Insertion Summary

• If two red nodes are adjacent, we perform either
– a restructuring (with one or two rotations)

and stop (cases 2 and 3), or
– recursively propagate red upward (case 1)

• A restructuring takes constant time
and is performed at most once;
it reorganizes an off-balanced section of the tree

• Propagations may continue up the tree and
are executed O(log n) times (height of the tree)

• The running time of an insertion is O(log n)

Master Informatique 																																		80Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

An Insertion Example
Insert "REDSOX" into an empty tree

Now, let us insert "CUBS"

R

E

D

O S

X

Master Informatique 																																		81Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Insert C (Case 0)

R

E

D

O S

X

R

E

D

O S

X

C

Master Informatique 																																		82Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Insert U (Case 3, Mirror)

R

E

D

O S

X

C

R

E

D

O S

X

C

U

Master Informatique 																																		83Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Insert U/2

R

E

D

O S

X

C

U

R

E

D

O

S X

C U

Master Informatique 																																		84Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Insert B (Case 2)

R

E

D

O

S X

C U

R

E

D

O

S X

C U

B

Master Informatique 																																		85Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Insert B/2

R

E

D

O

S X

C U

B

R

E

C

O

S X

B UD

Master Informatique 																																		86Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Insert S (Case 1)

R

E

C

O

S X

B UD

R

E

C

O

S X

B UD

S

Master Informatique 																																		87Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Insert S/2 (Case 2 Mirror)

R

E

C

O

S X

B UD

S

U

R

E

S

B S

C XO

D

Master Informatique 																																		88Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

DSA, Chapter 6: Overview

– Binary Search Trees
• Tree traversals
• Searching
• Insertion
• Deletion

– Red-Black Trees
• Properties
• Rotations
• Insertion
• Deletion

Master Informatique 																																		89Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Deletion
We first apply binary search tree deletion
• We can easily delete a node with at least one NULL child
• If the key to be deleted is stored

at a node u with two children,
we replace its content
with the content of the largest node v of the left subtree

(the predecessor of u)
and delete v instead

7

4 8

952

5

4 8

92

u u

v

Master Informatique 																																		90Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Deletion Algorithm
1. Remove u
2. If u.color = red we are done;
 else, assume that v (the predecessor of u)
 gets an additional black color:

– if v.color = red then v.color = black
and we are done!

– else v’ s color is “double black”

u

v
v

u

v
v

Master Informatique 																																		91Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Deletion Algorithm/2
How to eliminate double black edges?

– The intuitive idea is to perform a color compensation
Find a red node nearby, and
change the pair (red, double black)
into (black, black)

– Two cases: restructuring and recoloring
– Restructuring resolves the problem locally, while

recoloring may propagate it upward.
Hereafter we assume v is a left child

(swap right and left otherwise)

Master Informatique 																																		92Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Deletion Case 1
Case 1: v’s sibling s is black
 and both children of s are black
– Action: recoloring
s.color := red
v.color := black
p.color := p.color

 + black

– Note: We reduce the black depth
of both subtrees of p by 1;
parent p becomes more black

sv

p p

v s

Master Informatique 																																		93Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Deletion: Case 1

If parent p becomes double black,
continue upward

sv

p p

v s

Master Informatique 																																		94Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Deletion: Case 2
Case 2: v’s sibling s is black
 and s’s right child is red
– Action
s.color = p.color

p.color = black

s.right.color = black

LeftRotate(p)

– Idea: Compensate the extra black ring of v
 by the red of r

– Note: Terminates after restructuring

sv

p

r

rp

s

v

Master Informatique 																																		95Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Deletion: Case 3
Case 3: v’s sibling s is black, s’s left child is red,
 and s’s right child is black
– Idea: Reduce to Case 2
– Action
s.left.color = black

s.color = red

RightRotation(s)

s = p.right

– Note: This is now Case 2

sv

p

l

 lv

p

s

Master Informatique 																																		96Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Deletion: Case 4
Case 4: v’s sibling s is red
– Idea: give v a black sibling
– Action
s.color = black

p.color = red

LeftRotation(p)

s = p.right

– Note: This is now a Case 1, 2, or 3

sv

p

p

s

v

Master Informatique 																																		97Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Delete 9

8

6

4

72 95

8

6

4

72 5

Master Informatique 																																		98Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Delete 9/2
• Case 2 (sibling is black with black children) – recoloring

8

6

4

72 5

8

6

4

72 5

Master Informatique 																																		99Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Delete 8

8

6

4

72 5

7

6

4

2 5

Master Informatique 																																		100Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Delete 7: Restructuring

7

6

4

2 5

6

4

2 5

6

4

2

5

Master Informatique 																																		101Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

How Long Does it Take?
Deletion in a RB-tree takes O(log n)
 Maximum:

– three rotations and
– O(log n) recolorings

Master Informatique 																																		102Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Suggested Exercises
• Add left-rotate and right-rotate

to the implementation of your binary trees

• Implement a class of red-black search trees
with the following methods:
– (...), insert, delete,

Master Informatique 																																		103Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Suggested Exercises/2
Using paper and pencil:
• Draw the RB-trees after each of the following operations,

starting from an empty tree:
1. Insert 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
2.Delete 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

• Try insertions and deletions at random

Master Informatique 																																		104Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Other Balanced Trees

• Red-Black trees
are related
to 2-3-4 trees
(non-binary)

• AVL-trees have
simpler algorithms,
but may perform
a lot of rotations

2-3-4 Red-Black

Master Informatique 																																		105Data Structures and Algorithms

Chapter	6 Binary	Search	Trees

Next Part
• Hashing

