
Master Informatique 																																		1Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Data Structures and Algorithms

 Chapter 5

Dynamic Data Structures and
Abstract Data Types

Werner Nutt

Master Informatique 																																		2Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Acknowledgments
• The course follows the book “Introduction to Algorithms‘”,

by Cormen, Leiserson, Rivest and Stein, MIT Press
[CLRST]. Many examples displayed in these slides are
taken from their book.

• These slides are based on those developed by
Michael Böhlen for this course.

(See http://www.inf.unibz.it/dis/teaching/DSA/)

• The slides also include a number of additions made by
Roberto Sebastiani and Kurt Ranalter when they taught
later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)

Master Informatique 																																		3Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

DSA, Chapter 5: Overview
• Dynamic Data Structures

– Records, Pointers
– Lists

• Abstract Data Types
– Stack, Queue
– Ordered Lists
– Priority Queue

Master Informatique 																																		4Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

DSA, Chapter 5: Overview
• Dynamic Data Structures

– Records, Pointers
– Lists

• Abstract Data Types
– Stack, Queue
– Ordered Lists
– Priority Queue

Master Informatique 																																		5Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

DSA, Chapter 5: Overview
• Dynamic Data Structures

– Records, Pointers
– Lists

• Abstract Data Types
– Stack, Queue
– Ordered Lists
– Priority Queue

Master Informatique 																																		6Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Records
• Records are used to group a number of (different) fields
• A person record may group

name,
age,
city,
nationality,
ssn

• Grouping of fields is a basic and
often used technique

• It is available in all programming languages

Master Informatique 																																		7Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Records in Java
In Java a class is used to group fields:

class Rec {
 int a; int b;
};

public class Dummy {

 static Rec r;

 public static void main(String args[]) {
 r = new Rec();
 r.a = 15; r.b = 8;
 System.out.print(“Adding a and b yields “);
 System.out.println(r.a + r.b);
 }
}

class Rec {
 int a; int b;
};

public class Dummy {

 static Rec r;

 public static void main(String args[]) {
 r = new Rec();
 r.a = 15; r.b = 8;
 System.out.print(“Adding a and b yields “);
 System.out.println(r.a + r.b);
 }
}

Master Informatique 																																		8Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Records in C

In C a struct is used to group fields:

struct rec {
 int a;
 int b;
};

struct rec r;

int main() {
 r.a = 5; r.b = 8;
 printf(“The sum of a and b is %d\n”, r.a + r.b);
}

// gcc -o dummy dummy.c ; ./dummy

struct rec {
 int a;
 int b;
};

struct rec r;

int main() {
 r.a = 5; r.b = 8;
 printf(“The sum of a and b is %d\n”, r.a + r.b);
}

// gcc -o dummy dummy.c ; ./dummy

Master Informatique 																																		9Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Recursive Data Structures
The counterpart of recursive functions are
recursively defined data structures

• Example: list of integers

• In Java:

class List{
 int value;
 List tail;

 };

list={ integerinteger , list }
In C:
struct list{
 int value;
 struct list *tail;

};

Master Informatique 																																		10Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Recursive Data Structures/2

The storage space of recursive data structures is not
known in advance.

– It is determined by the number of
elements that will be stored in the list

– This is only known during runtime
(program execution)

– The list can grow and shrink
during program execution

Master Informatique 																																		11Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Recursive Data Structures/3

There must be mechanisms
• to constrain the initial storage space

of recursive data structures
(it is potentially infinite)

• to grow and shrink the storage space
of a recursive data structures
during program execution

Master Informatique 																																		12Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Pointers

• A common technique is to allocate the storage space
(memory) dynamically

• That means the storage space is allocated when the
program executes

• The compiler only reserves space for an address to
these dynamic parts

• These addresses are called pointers

Master Informatique 																																		13Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Pointers/2

• integer i
• pointer p to an

integer (55)
• record r with

integer
components a (17)
and b (24)

• pointer s
that points to r

1af78a

MemoryVariableAddress

1af789
1af788
1af787
1af786
1af785
1af784
1af783
1af782

55

1af784s
24
17r
1af789p
23i

1

Master Informatique 																																		14Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Pointers in C

1. To follow (chase, dereference) a pointer variable,
we write *p
*p = 12

2. To get the address of a variable i, we write &i
p = &i

3. To allocate memory, we use malloc(sizeof(Type)),
which returns an address in the memory heap
p = malloc(sizeof(int))

4. To free storage space pointed to by a pointer p we
use free
free(p)

Master Informatique 																																		15Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Pointers in C/2

• To declare a pointer to type T we write T*
– int* p

• Note that * is used for two purposes:
– Declaring a pointer variable
int* p

– Following a pointer
*p = 15

• In other languages these are syntactically
different

Master Informatique 																																		16Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Pointers in C/3

• int i
i = 23

• int* p
p = malloc(sizeof(int))
*p = 55

• struct rec r
r.a = 17
r.b = 24

• struct rec* s;
s = &r 1af78a

MemoryVariableAddress

1af789
1af788
1af787
1af786
1af785
1af784
1af783
1af782

55

1af784s
24
17r
1af789p
23i

Master Informatique 																																		17Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Pointers in C/4

1af78a

MemoryVariableAddress

1af789

1af788

1af787

1af786

1af785

1af784

1af783

1af782

55

1af784s

24

17r

1af789p

23i

MemoryVariable

55

s
24
17r

p
23i

Alternate notation:

Master Informatique 																																		18Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Pointers/3
• Pointers are only one mechanism

to implement recursive data structures
• Programmers need not be aware of their existence

The storage space can be managed automatically
• In C the storage space has to be managed explicitly
• In Java

– an object is implemented as a pointer
– creation of objects (new)

automatically allocates storage space.
– accessing an object will automatically follow the pointer
– deallocation is done automatically (garbage collection)

Master Informatique 																																		19Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

DSA, Chapter 5: Overview
• Dynamic Data Structures

– Records, Pointers
– Lists

• Abstract Data Types
– Stack, Queue
– Ordered Lists
– Priority Queue

Master Informatique 																																		20Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Lists
• A list of integers:

• Corresponding declaration in Java:

• Accessing a field: p.a

class Node {
 int val;
 Node next;
}

class List {
 Node head;
}

class Node {
 int val;
 Node next;
}

class List {
 Node head;
}

88 52 11 12head

Master Informatique 																																		21Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Lists/3
• Populating the list with integers (Java):

88 52 11 12 l 88 52 11 12head

l = new List();

l.head = new Node();
l.head.val = 88;
l.head.next = new Node();

p = l.head.next;
p.val = 52;
p.next = new Node();

p = p.next;
p.val = 11;
p.next = new Node();

p = p.next;
p.val = 12;
p.next = null;

Master Informatique 																																		22Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

List Traversal
• Print all elements of a list (Java):

p = l.head;
while (p != null) {
 System.out.printf(“%d,”, p.val);
 p = p.next
}
System.out.printf(“\n”);

p = l.head;
while (p != null) {
 System.out.printf(“%d,”, p.val);
 p = p.next
}
System.out.printf(“\n”);

88 52 11 1288 52 11 12 l head

Master Informatique 																																		23Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

List Insertion
• Insert 43 at the beginning (Java):

n = new Node();
n.val = 43
n.next = l.head;
l.head = n;

n = new Node();
n.val = 43
n.next = l.head;
l.head = n;

88 12 l head

88 1243 l head

Master Informatique 																																		24Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

List Insertion/2

n = new Node();
n.val = 43;
n.next = null;
if (head == null) {
 head = n;
} else {
 p = head;
 while (p.next != null) { p = p.next; }
 p.next = n;
}

n = new Node();
n.val = 43;
n.next = null;
if (head == null) {
 head = n;
} else {
 p = head;
 while (p.next != null) { p = p.next; }
 p.next = n;
}

• Insert 43 at end (Java):

88 12head l

Master Informatique 																																		25Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

List Deletion
• Delete (first) node with value v from a non-empty list

(Java):

p = l.head;
if (p.val == v) {
 head = p.next;
}
else {
 while (p.next != null && p.next.val != v)

{
 p = p.next;
 }
 if (p.next != null){
 p.next = p.next.next;
}

p = l.head;
if (p.val == v) {
 head = p.next;
}
else {
 while (p.next != null && p.next.val != v)

{
 p = p.next;
 }
 if (p.next != null){
 p.next = p.next.next;
}

Master Informatique 																																		26Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Lists
Cost of operations:
– insert at beginning: O(1)
– insert at end: O(n)
– check isEmpty: O(1)
– delete from the beginning: O(1)
– search: O(n)
– delete: O(n)
– print: O(n)

Master Informatique 																																		27Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Suggested Exercises
• Implement a linked list with the following functionalities:

isEmpty, insertFirst, insertLast, search, deleteFirst,
delete, print

• As before, with a recursive version of:
insertLast, search, delete, print
– are recursive versions simpler?

• Implement an efficient version of print which prints the
list in reverse order

Master Informatique 																																		28Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Variants of Linked Lists

• Linked lists with explicit head/tail

• Doubly linked lists

Master Informatique 																																		29Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

List with Explicit Head/Tail
• Instead of a single head we can have a head and tail:

Master Informatique 																																		30Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Doubly Linked Lists
• To be able to quickly navigate back and forth in a list we

use doubly linked lists

• A node of a doubly linked list has a next and a prev link

Master Informatique 																																		31Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Master Informatique 																																		32Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

DSA, Chapter 5: Overview
• Dynamic Data Structures

– Records, Pointers
– Lists

• Abstract Data Types
– Stack, Queue
– Ordered Lists
– Priority Queue

Master Informatique 																																		33Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Abstract Data Types (ADTs)
An ADT is a mathematically specified entity
that defines a set of its instances with:

– an interface – a collection of signatures of operations
that can be invoked on an instance.

– a set of conditions (preconditions and post-conditions),
possibly formulated as axioms,
that define the semantics of the operations
(i.e., what the operations do to instances of the ADT,
but not how)

Master Informatique 																																		34Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Examples of ADTs

We discuss a number of popular ADTs:
– Stacks
– Queues
– Priority Queues
– Ordered Lists
– Dictionaries (realized by Trees, next chapter)

They illustrate the use of lists and arrays

Master Informatique 																																		35Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Why ADTs?

• ADTs allow one to break tasks into pieces
that can be worked on independently – without
compromising correctness.

They serve as specifications of requirements for the
building blocks of solutions to algorithmic problems

• ADTs encapsulate data structures and algorithms that
implement them.

Master Informatique 																																		36Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Why ADTs?/2
• ADTs provide a language to talk

on a higher level of abstraction

• ADTs allow one to separate the check of correctness
and the performance analysis:
1.Design the algorithm using an ADT
2.Count how often different ADT operations are used
3.Choose suitable implementations of ADT operations

ADT = Instance variables + procedures
(Class = Instance variables + methods)

Master Informatique 																																		37Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

DSA, Chapter 5: Overview
• Dynamic Data Structures

– Records, Pointers
– Lists

• Abstract Data Types
– Stack, Queue
– Ordered Lists
– Priority Queue

Master Informatique 																																		38Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Stacks
• In a stack, insertions and deletions follow the

last-in-first-out (LIFO) principle.
• Thus, the element that has been in the queue for the

shortest time is processed first
– Example: OS stack, …

• Solution: Elements are inserted at the beginning (push)
and removed from the beginning (pop)

Beginning Stack

Master Informatique 																																		39Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Stacks/2
We assume
• there is a class Element
• we want to store objects of type Element in our stacks

We require that stacks support the operations:
• construction of a stack

(possibly with a parameter for the maximal size)
• checking whether a stack is empty
• asking for the current size of the stack
• pushing an element onto the stack
• popping an element from the stack

Master Informatique 																																		40Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Stacks/3
Appropriate data structure:

– Linked list, one head: good
– Array: fastest, limited in size
– Doubly linked list: unnecessary

Master Informatique 																																		41Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

An Array Implementation
• Create a stack using an array
• A maximum size N is specified
• The stack consists of an N-element array S and

an integer variable count:
– count: index of the front element (head)
– count represents the position where to insert next

element, and the number of elements in the stack

Master Informatique 																																		42Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Array Implementation of Stacks
class Stack{
 int maxSize, count;
 Element[] S;

Stack(int maxSize){
 this.maxSize = maxSize;

 S = new Element[maxSize];
 count = 0; }

int size(){…}

boolean isEmpty(){…}

void push(Element x){ … }

Element pop(){ … }

}

class Stack{
 int maxSize, count;
 Element[] S;

Stack(int maxSize){
 this.maxSize = maxSize;

 S = new Element[maxSize];
 count = 0; }

int size(){…}

boolean isEmpty(){…}

void push(Element x){ … }

Element pop(){ … }

}

Java-style
implementation
of stacks

Master Informatique 																																		43Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Array Implementation of Stacks/2

int size()
 return count

int size()
 return count

boolean isEmpty()
 return (count == 0)

boolean isEmpty()
 return (count == 0)

Element pop()
 if isEmpty() then Error
 x = S[count-1]
 count--;
 return x

Element pop()
 if isEmpty() then Error
 x = S[count-1]
 count--;
 return x

void push(Element x)
 if count==maxSize then Error;
 S[count] = x;
 count++;

void push(Element x)
 if count==maxSize then Error;
 S[count] = x;
 count++;

Java-style
implementation
of stacks:
arrays start at
position 0

Master Informatique 																																		44Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

A Linked-list Implementation
• A list of integers:

• Insert from the top of the list

• Constant-time operation!

void push(Element x):

node p = new node();
p.val = x;
p.next = head;
head = p;

void push(Element x):

node p = new node();
p.val = x;
p.next = head;
head = p;

88 52 11 12head l

Master Informatique 																																		45Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

A Linked-list Implementation/2
• A list of integers:

• Extract from the top of the list

• Constant-time operation!

Element pop():

x = head.val;
head = head.next;
return x;

Element pop():

x = head.val;
head = head.next;
return x;

88 52 11 12head l

Master Informatique 																																		46Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Queues
• In a queue insertions and deletions follow the

first-in-first-out (FIFO) principle
• Thus, the element that has been in the queue for the

longest time is processed first
– Example: Printer queue, …

• Solution: Elements are inserted at the end (enqueue)
and removed from the beginning (dequeue).

Beginning EndQueue

Master Informatique 																																		47Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Queues/2
We assume
• there is a class Element
• we want to store objects of type Element in our queues

We require that queues support the operations:
• construction of a queue

(possibly with a parameter for the maximal size)
• checking whether a queue is empty
• asking for the current size of the queue
• enqueuing an element into the queue
• dequeuing an element from the queue

Master Informatique 																																		48Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Queues/3
Appropriate data structure:
– Linked list, head: inefficient insertions
– Linked list, head/tail: good
– Array: fastest, limited in size
– Doubly linked list: unnecessary

Master Informatique 																																		49Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

An Array Implementation
• Create a queue using an array in a circular fashion
• A maximum size maxSize is specified
• The queue consists of an N-element array Q and two

integer variables:
– f, index of the front element (head, for dequeue)
– r, index of the element after the last one

 (rear, for enqueuing)

Master Informatique 																																		50Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

An Array Implementation/2

“Wrapped around” configuration:

What does “f == r” mean?

Master Informatique 																																		51Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

An Array Implementation/3
In the array implementation of stacks
• we needed an array of size N

to realize a stack of maximal size N
• we could model the empty stack with “count == 0”

Let's model a queue with an array of size N and “pointers” f, r:
• if f is fixed, then r can have N different values,

 one of them models “the queue is empty”
• hence, we can only store N-1 elements,

if we implement our queue with an array of length N

Master Informatique 																																		52Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Array Implementation of Queues/3
class Queue{
 int N, f, r;
 Element[] Q;

Queue(int maxSize){
 this.N = maxSize + 1;

 Q = new Element[N];
 f = 0; r = 0;}

int size(){…}

boolean isEmpty(){…}

void enqueue(Element x){ … }

Element dequeue(){ … }

}

class Queue{
 int N, f, r;
 Element[] Q;

Queue(int maxSize){
 this.N = maxSize + 1;

 Q = new Element[N];
 f = 0; r = 0;}

int size(){…}

boolean isEmpty(){…}

void enqueue(Element x){ … }

Element dequeue(){ … }

}

Java-style
implementation
of queues

Master Informatique 																																		53Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

An Array Implementation of Queues/4

int size()
 return (r-f+N) mod N

int size()
 return (r-f+N) mod N

boolean isEmpty()
 return size() == 0

boolean isEmpty()
 return size() == 0

Element dequeue()
 if isEmpty() then Error
 x = Q[f]
 f = (f+1) mod N
 return x

Element dequeue()
 if isEmpty() then Error
 x = Q[f]
 f = (f+1) mod N
 return x

void enqueue(Element x)
 if size()==N-1 then Error
 Q[r] = x
 r = (r+1) mod N

void enqueue(Element x)
 if size()==N-1 then Error
 Q[r] = x
 r = (r+1) mod N

We assume
arrays
as in Java,
with indexes
from 0 to N-1

Master Informatique 																																		54Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

A Linked-list Implementation
Use linked-list with head and tail
Insert in tail, extract from head

Master Informatique 																																		55Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

A Linked-list implementation/2

Insert at the end of the list: O(1)

void enqueue(Element x):
node p = new node();
p.info = x; p.next = null;
tail.next=p;
tail=tail.next;

void enqueue(Element x):
node p = new node();
p.info = x; p.next = null;
tail.next=p;
tail=tail.next;

Master Informatique 																																		56Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

A Linked-list Implementation/3

Insert at the end of the list: O(1)

Element dequeue():
x = head.info;
head = head.next;
return x;

Element dequeue():
x = head.info;
head = head.next;
return x;

Master Informatique 																																		57Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Suggested Exercises
• Implement stack and queue as arrays
• Implement stack and queue as linked lists,

with the same interface as the array implementation

Master Informatique 																																		58Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Suggested Exercises/2
• Suppose a queue of integers is implemented with an

array of 8 elements: draw the outputs and status of such
array after the following operations:
– enqueue 2, 4, 3, 1, 7, 6, 9
– dequeue 3 times
– enqueue 2, 3, 4

Can we enqueue any more element?
• Try the same with a stack
• Try similar examples (also with a stack)

Master Informatique 																																		59Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

DSA, Chapter 5: Overview
• Dynamic Data Structures

– Records, Pointers
– Lists

• Abstract Data Types
– Stack, Queue
– Ordered Lists
– Priority Queue

Master Informatique 																																		60Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Ordered List
• In an ordered list Elements are ordered

according to a key, which we assume to be an integer
• Example functions on ordered list:

– isEmpty()
– int maxKey(), int minKey()
– Element find(int key)
– Element floorEntry(int key)
– Element ceilingEntry(int key)
– insert(int key, Element x)
– print()

Master Informatique 																																		61Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Ordered List/2
• Declaration of an ordered list similar to unordered list
• Some operations (search, and hence insert and delete)

are slightly different

class Node{
 int key; value Element;

 Node next;

}

class OList{

 Node head;

}

Master Informatique 																																		62Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Ordered List/3
• Insertion into an ordered list (Java):

void insert(int i, Element x) {
 Node q = new Node();
 q.key = i; q.element = x; q.next = NULL;
 Node p;

 if (head == NULL || head.key > i) {
 q.next = head;
 head = q;
 } else {
…

void insert(int i, Element x) {
 Node q = new Node();
 q.key = i; q.element = x; q.next = NULL;
 Node p;

 if (head == NULL || head.key > i) {
 q.next = head;
 head = q;
 } else {
…

Master Informatique 																																		63Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Ordered List/4
Insertion into an ordered list (Java):

void insert(int i, Element x) {
 …
 } else {
 p = head;
 while (p.next != NULL && p.next.key < i)
 p = p.next;
 q.next = p.next;
 p.next = q;
 }
}

void insert(int i, Element x) {
 …
 } else {
 p = head;
 while (p.next != NULL && p.next.key < i)
 p = p.next;
 q.next = p.next;
 p.next = q;
 }
}

Master Informatique 																																		64Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Ordered List
Cost of operations:
– Insertion: O(n)
– Check isEmpty: O(1)
– Search: O(n)
– Delete: O(n)
– Print: O(n)

Master Informatique 																																		65Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Suggested Exercises
• Implement an ordered list with the following

functionalities: isEmpty, insert, search, delete, print
• Implement also deleteAllOccurrences
• As before, with a recursive version of: insert, search,

delete, print
– are recursive versions simpler?

• Implement an efficient version of print which prints the
list in reverse order

Master Informatique 																																		66Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

DSA, Chapter 5: Overview
• Dynamic Data Structures

– Records, Pointers
– Lists

• Abstract Data Types
– Stack, Queue
– Ordered Lists
– Priority Queue

Master Informatique 																																		67Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Priority Queues
• A priority queue (PQ) is an ADT for maintaining a set S

of elements, each with an associated value called key

• A PQ supports the following operations
– Insert(S,x) insert element x in set S (S := S $ {x})
– ExtractMax(S) returns and removes the element of S

with the largest key

• One way of implementing it: a heap

Master Informatique 																																		68Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Array Implementation of Priority Queues
class PQueue{
 int maxSize, size;
 int[] A;

PQueue(int maxSize){
 this.maxsize = maxSize;

 A = new int[N];
 size = 0;}

int size(){…}

boolean isEmpty(){…}

void insert(int key){ … }

int extractMax(){ … }

}

class PQueue{
 int maxSize, size;
 int[] A;

PQueue(int maxSize){
 this.maxsize = maxSize;

 A = new int[N];
 size = 0;}

int size(){…}

boolean isEmpty(){…}

void insert(int key){ … }

int extractMax(){ … }

}

Java-style
implementation
of priority queue
of integers

Master Informatique 																																		69Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Priority Queues/2
• Removal of max takes constant time

on top of Heapify Θ(log n)

int extractMax()
 // removes & returns largest element of A
 if size = 0 then throw Exception;
 max := A[1];
 A[1] := A[size];
 size := size-1;
 Heapify(A, 1, size);
 return max;

int extractMax()
 // removes & returns largest element of A
 if size = 0 then throw Exception;
 max := A[1];
 A[1] := A[size];
 size := size-1;
 Heapify(A, 1, size);
 return max;

We assume
array indices
starting with 1

Master Informatique 																																		70Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Priority Queues/3
• Insertion of a new element

– enlarge the PQ and propagate the new element from
last place “up” the PQ

– tree is of height log n, running time: Θ(log n)

void insert(A,x)
 if size = maxSize then throw Exception;
 size := size+1;
 i := size;
 while i > 1 and A[parent(i)] < x do
 A[i] := A[parent(i)];
 i := parent(i);
 A[i] := x;

void insert(A,x)
 if size = maxSize then throw Exception;
 size := size+1;
 i := size;
 while i > 1 and A[parent(i)] < x do
 A[i] := A[parent(i)];
 i := parent(i);
 A[i] := x;

Master Informatique 																																		71Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Priority Queues/4

16
14

8 7

142

9 3

10
16

14

8 7

142

9 3

10

16
15

8 14

142

9 3

10

16

8 14

142

9 3

10

77

a) b)

d)c)

Master Informatique 																																		72Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Priority Queues/5
• Applications:

– job scheduling shared computing resources (Unix)
– event simulation
– as a building block for other algorithms

• We used a heap and an array to implement PQs
Other implementations are possible

Master Informatique 																																		73Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Suggested Exercises
• Implement a priority queue
• Consider the PQ of previous slides. Draw the status of

the PQ after each of the following operations:
• Insert 17,18,18,19
• Extract four numbers
• Insert again 17,18,18,19

• Build a PQ from scratch, adding and inserting elements
at will, and draw the status of the PQ after each
operation

Master Informatique 																																		74Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Summary
• Records, Pointers
• Dynamic Data Structures

– Lists (head, head/tail, doubly linked)
• Abstract Data Types

– Type + Functions
– Stack, Queue
– Ordered Lists
– Priority Queues

Master Informatique 																																		75Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Next Chapter
• Binary Search Trees
• Red-Black Trees

