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• The course follows the book “Introduction to Algorithms‘”, 

by Cormen, Leiserson, Rivest and Stein, MIT Press 
[CLRST]. Many examples displayed in these slides  are 
taken from their book. 

• These slides are based on those developed by 
Michael Böhlen for this course. 

(See http://www.inf.unibz.it/dis/teaching/DSA/)

• The slides also include a number of additions made by 
Roberto Sebastiani and Kurt Ranalter when they taught 
later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)
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DSA, Chapter 5: Overview
• Dynamic Data Structures

– Records,  Pointers
– Lists

• Abstract Data Types
– Stack, Queue
– Ordered Lists
– Priority Queue
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Records
• Records are used to group a number of (different) fields
• A person record may group 

name, 
age, 
city, 
nationality, 
ssn

• Grouping of fields is a basic and 
often used technique

• It is available in all programming languages
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Records in Java
In Java a class is used to group fields:

class Rec { 
  int a; int b; 
};

public class Dummy {

  static Rec r;

  public static void main(String args[]) {
    r = new Rec();
    r.a = 15; r.b = 8;
    System.out.print(“Adding a and b yields “);
    System.out.println(r.a + r.b);
  }
}

class Rec { 
  int a; int b; 
};

public class Dummy {

  static Rec r;

  public static void main(String args[]) {
    r = new Rec();
    r.a = 15; r.b = 8;
    System.out.print(“Adding a and b yields “);
    System.out.println(r.a + r.b);
  }
}



Master Informatique 																																		8Data Structures and Algorithms

Chapter	5 Dynamic	Data	Structures

Records in C

In C a struct is used to group fields:

struct rec {
  int a;
  int b;
};

struct rec r;

int main() {
  r.a = 5; r.b = 8;
  printf(“The sum of a and b is %d\n”, r.a + r.b);
}

// gcc -o dummy dummy.c ; ./dummy

struct rec {
  int a;
  int b;
};

struct rec r;

int main() {
  r.a = 5; r.b = 8;
  printf(“The sum of a and b is %d\n”, r.a + r.b);
}

// gcc -o dummy dummy.c ; ./dummy
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Recursive Data Structures
The counterpart of recursive functions are 
recursively defined data structures
 

• Example: list of integers

• In Java:  
 

class List{
    int value;
     List tail;

  }; 

list={ integerinteger , list }
In C:   
struct list{
  int value;
   struct list *tail;

};
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Recursive Data Structures/2

The storage space of recursive data structures is not 
known in advance.

– It is determined by the number of 
elements that will be stored in the list

– This is only known during runtime 
(program execution)

– The list can grow and shrink 
during program execution
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Recursive Data Structures/3

There must be mechanisms 
• to constrain the initial storage space 

of recursive data structures 
(it is potentially infinite)
 

• to grow and shrink the storage space 
of a recursive data structures 
during program execution
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Pointers

• A common technique is to allocate the storage space 
(memory) dynamically

• That means the storage space is allocated when the 
program executes

• The compiler only reserves space for an address to 
these dynamic parts

• These addresses are called pointers
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Pointers/2

• integer i
• pointer p to an 

integer (55)
• record r with 

integer 
components a (17) 
and b (24)

• pointer s 
that points to r

1af78a

MemoryVariableAddress

1af789
1af788
1af787
1af786
1af785
1af784
1af783
1af782

55

1af784s
24
17r
1af789p
23i

1
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Pointers in C

1. To follow (chase, dereference) a pointer variable,
we write *p
*p = 12

2. To get the address of a variable i, we write &i
p = &i

3. To allocate memory, we use malloc(sizeof(Type)), 
which returns an address in the memory heap
p = malloc(sizeof(int))

4. To free storage space pointed to by a pointer p we 
use free
free(p)
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Pointers in C/2

• To declare a pointer to type T we write T*
– int* p

• Note that * is used for two purposes:
– Declaring a pointer variable
int* p

– Following a pointer
*p = 15

• In other languages these are syntactically 
different
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Pointers in C/3

• int i
i = 23

• int* p
p = malloc(sizeof(int))
*p = 55

• struct rec r
r.a = 17
r.b = 24

• struct rec* s;
s = &r 1af78a

MemoryVariableAddress

1af789
1af788
1af787
1af786
1af785
1af784
1af783
1af782

55

1af784s
24
17r
1af789p
23i
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Pointers in C/4

1af78a

MemoryVariableAddress

1af789

1af788

1af787

1af786

1af785

1af784

1af783

1af782

55

1af784s

24

17r

1af789p

23i

MemoryVariable

55

s
24
17r

p
23i

Alternate notation:
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Pointers/3
• Pointers are only one mechanism 

to implement recursive data structures
• Programmers need not be aware of their existence

The storage space can be managed automatically
• In C the storage space has to be managed explicitly
• In Java

– an object is implemented as a pointer
– creation of objects (new) 

automatically allocates storage space.
– accessing an object will automatically follow the pointer
– deallocation is done automatically (garbage collection)
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DSA, Chapter 5: Overview
• Dynamic Data Structures

– Records,  Pointers
– Lists

• Abstract Data Types
– Stack, Queue
– Ordered Lists
– Priority Queue
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Lists
• A list of integers:

• Corresponding declaration in Java:

• Accessing a field:  p.a

class Node {
  int val;
  Node next;
}

class List {
  Node head;
} 

class Node {
  int val;
  Node next;
}

class List {
  Node head;
} 

88 52 11 12head
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Lists/3
• Populating the list with integers (Java):

88 52 11 12        l 88 52 11 12head

l = new List();

l.head = new Node();
l.head.val = 88;
l.head.next = new Node();

p = l.head.next;
p.val = 52;
p.next = new Node();

p = p.next;
p.val = 11;
p.next = new Node();

p = p.next;
p.val = 12;
p.next = null;
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List Traversal
• Print all elements of a list (Java):

p = l.head;
while (p != null) {
  System.out.printf(“%d,”, p.val);
  p = p.next
}
System.out.printf(“\n”);

p = l.head;
while (p != null) {
  System.out.printf(“%d,”, p.val);
  p = p.next
}
System.out.printf(“\n”);

88 52 11 1288 52 11 12        l head
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List Insertion
• Insert 43 at the beginning (Java):

n = new Node();
n.val = 43
n.next = l.head;
l.head = n;

n = new Node();
n.val = 43
n.next = l.head;
l.head = n;

88 12        l head

88 1243        l head
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List Insertion/2

n = new Node();
n.val = 43;
n.next = null; 
if (head == null) {
  head = n; 
} else {
  p = head;
  while (p.next != null) { p = p.next; }
  p.next = n;
}

n = new Node();
n.val = 43;
n.next = null; 
if (head == null) {
  head = n; 
} else {
  p = head;
  while (p.next != null) { p = p.next; }
  p.next = n;
}

• Insert 43 at end (Java):

88 12head        l
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List Deletion
• Delete (first) node with value v from a non-empty list 

(Java):

p = l.head;
if (p.val == v) {
  head = p.next; 
} 
else {
  while (p.next != null && p.next.val != v) 

{
    p = p.next;
  }
  if (p.next != null){
      p.next = p.next.next;
}

p = l.head;
if (p.val == v) {
  head = p.next; 
} 
else {
  while (p.next != null && p.next.val != v) 

{
    p = p.next;
  }
  if (p.next != null){
      p.next = p.next.next;
}
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Lists
Cost of operations:
– insert at beginning: O(1)
– insert at end: O(n)
– check isEmpty: O(1)
– delete from the beginning: O(1)
– search: O(n)
– delete: O(n)
– print: O(n)
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Suggested Exercises
• Implement a linked list with the following functionalities: 

isEmpty, insertFirst, insertLast, search, deleteFirst, 
delete, print

• As before, with a recursive version of: 
insertLast, search, delete, print
– are recursive versions simpler?

• Implement an efficient version of print which prints the 
list in reverse order 
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Variants of Linked Lists

• Linked lists with explicit head/tail

• Doubly linked lists
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List with Explicit Head/Tail
• Instead of a single head we can have a head and tail:
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Doubly Linked Lists
• To be able to quickly navigate back and forth in a list we 

use doubly linked lists 

• A node of a doubly linked list has a next and a prev link
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DSA, Chapter 5: Overview
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Abstract Data Types (ADTs)
An ADT is a mathematically specified entity 
that defines a set of its instances with:

– an interface – a collection of signatures of operations 
that can be invoked on an instance.

– a set of conditions (preconditions and post-conditions), 
possibly formulated as axioms,
that define the semantics of the operations 
(i.e., what the operations do to instances of the ADT, 
but not how)
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Examples of ADTs

We discuss a number of popular ADTs:
– Stacks
– Queues
– Priority Queues
– Ordered Lists
– Dictionaries (realized by Trees, next chapter)

They illustrate the use of lists and arrays
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Why ADTs?

• ADTs allow one to break tasks into pieces 
that can be worked on independently – without 
compromising correctness.

They serve as specifications of requirements for the 
building blocks of solutions to algorithmic problems

• ADTs encapsulate data structures and algorithms that 
implement them.
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Why ADTs?/2
• ADTs provide a language to talk

on a higher level of abstraction

• ADTs allow one to separate the check of correctness 
and the performance analysis:
1.Design the algorithm using an ADT
2.Count how often different ADT operations are used
3.Choose suitable implementations of ADT operations

ADT = Instance variables + procedures
(Class = Instance variables + methods)
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DSA, Chapter 5: Overview
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Stacks
• In a stack, insertions and deletions follow the 

last-in-first-out (LIFO) principle.
• Thus, the element that has been in the queue for the 

shortest time is processed first
– Example: OS stack, …

• Solution: Elements are inserted at the beginning (push) 
and removed from the beginning (pop)

Beginning Stack
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Stacks/2
We assume
• there is a class Element 
• we want to store objects of type Element in our stacks

We require that stacks support the operations:
• construction of a stack 

(possibly with a parameter for the maximal size)
• checking whether a stack is empty
• asking for the current size of the stack
• pushing an element onto the stack
• popping an element from the stack
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Stacks/3
Appropriate data structure:

– Linked list, one head: good
– Array: fastest, limited in size
– Doubly linked list: unnecessary
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An Array Implementation
• Create a stack using an array 
• A maximum size N is specified
• The stack consists of an N-element array S and 

an integer variable count:
– count: index of the front element (head)
– count represents the position where to insert next 

element, and the number of elements in the stack
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Array Implementation of  Stacks
class Stack{
   int maxSize, count;
   Element[] S;

Stack(int maxSize){
   this.maxSize = maxSize;

 S = new Element[maxSize];
   count = 0; }

int size(){…}

boolean isEmpty(){…} 

void push(Element x){ … }

Element pop(){ … }

}

class Stack{
   int maxSize, count;
   Element[] S;

Stack(int maxSize){
   this.maxSize = maxSize;

 S = new Element[maxSize];
   count = 0; }

int size(){…}

boolean isEmpty(){…} 

void push(Element x){ … }

Element pop(){ … }

}

Java-style 
implementation 
of stacks
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Array Implementation of  Stacks/2

int size()
  return count

int size()
  return count

boolean isEmpty()
  return (count == 0)

boolean isEmpty()
  return (count == 0)

Element pop()
  if isEmpty() then Error
  x = S[count-1]
  count--;
  return x

Element pop()
  if isEmpty() then Error
  x = S[count-1]
  count--;
  return x

void push(Element x)
  if count==maxSize then Error;
  S[count] = x;
  count++;

void push(Element x)
  if count==maxSize then Error;
  S[count] = x;
  count++;

Java-style 
implementation 
of stacks:
arrays start at
position 0
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A Linked-list Implementation
• A list of integers:

• Insert from the top of the list

• Constant-time operation!

void push(Element x):

node p = new node();
p.val = x;
p.next = head;
head = p; 

void push(Element x):

node p = new node();
p.val = x;
p.next = head;
head = p; 

88 52 11 12head        l
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A Linked-list Implementation/2
• A list of integers:

• Extract from the top of the list

• Constant-time operation!

Element pop():

x = head.val;
head = head.next;
return x;

Element pop():

x = head.val;
head = head.next;
return x;

88 52 11 12head        l
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Queues
• In a queue insertions and deletions follow the 

first-in-first-out (FIFO) principle
• Thus, the element that has been in the queue for the 

longest time is processed first
– Example: Printer queue, …

• Solution: Elements are inserted at the end (enqueue) 
and removed from the beginning (dequeue).

Beginning EndQueue
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Queues/2
We assume
• there is a class Element 
• we want to store objects of type Element in our queues

We require that queues support the operations:
• construction of a queue 

(possibly with a parameter for the maximal size)
• checking whether a queue is empty
• asking for the current size of the queue
• enqueuing an element into the queue
• dequeuing an element from the queue
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Queues/3
Appropriate data structure:
– Linked list, head: inefficient insertions
– Linked list, head/tail: good
– Array: fastest, limited in size
– Doubly linked list: unnecessary
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An Array Implementation
• Create a queue using an array in a circular fashion
• A maximum size maxSize is specified
• The queue consists of an N-element array Q and two 

integer variables:
– f, index of the front element (head, for dequeue)
– r, index of the element after the last one 

   (rear, for enqueuing)
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An Array Implementation/2

“Wrapped around” configuration:

What does “f == r” mean?
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An Array Implementation/3
In the array implementation of stacks 
• we needed an array of size N 

to realize a stack of maximal size N
• we could model the empty stack with “count == 0”

Let's model a queue with an array of size N and “pointers” f, r:
• if f is fixed, then r can have N different values, 

                one of them models “the queue is empty”
• hence, we can only store N-1 elements, 

if we implement our queue with an array of length N
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Array Implementation of  Queues/3
class Queue{
   int N, f, r;
   Element[] Q;

Queue(int maxSize){
   this.N = maxSize + 1;

 Q = new Element[N];
   f = 0; r = 0;}

int size(){…}

boolean isEmpty(){…} 

void enqueue(Element x){ … }

Element dequeue(){ … }

}

class Queue{
   int N, f, r;
   Element[] Q;

Queue(int maxSize){
   this.N = maxSize + 1;

 Q = new Element[N];
   f = 0; r = 0;}

int size(){…}

boolean isEmpty(){…} 

void enqueue(Element x){ … }

Element dequeue(){ … }

}

Java-style 
implementation 
of queues
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An Array Implementation of Queues/4

int size()
  return (r-f+N) mod N

int size()
  return (r-f+N) mod N

boolean isEmpty()
  return size() == 0

boolean isEmpty()
  return size() == 0

Element dequeue()
  if isEmpty() then Error
  x = Q[f]
  f = (f+1) mod N
  return x

Element dequeue()
  if isEmpty() then Error
  x = Q[f]
  f = (f+1) mod N
  return x

void enqueue(Element x)
  if size()==N-1 then Error
  Q[r] = x
  r = (r+1) mod N

void enqueue(Element x)
  if size()==N-1 then Error
  Q[r] = x
  r = (r+1) mod N

We assume
arrays 
as in Java, 
with indexes 
from 0 to N-1
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A Linked-list Implementation
Use linked-list with head and tail
Insert in tail, extract from head 
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A Linked-list implementation/2

Insert at the end of the list: O(1)

void enqueue(Element x):
node p = new node();
p.info = x; p.next = null;
tail.next=p;
tail=tail.next;

void enqueue(Element x):
node p = new node();
p.info = x; p.next = null;
tail.next=p;
tail=tail.next;
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A Linked-list Implementation/3

Insert at the end of the list: O(1)

Element dequeue():
x = head.info;
head = head.next;
return x;

Element dequeue():
x = head.info;
head = head.next;
return x;
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Suggested Exercises
• Implement stack and queue as arrays 
• Implement stack and queue as linked lists, 

with the same interface as the array implementation
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Suggested Exercises/2
• Suppose a queue of integers is implemented with an 

array of 8 elements: draw the outputs and status of such 
array after the following operations: 
– enqueue 2, 4, 3, 1, 7, 6, 9
– dequeue 3 times
– enqueue 2, 3, 4

Can we enqueue any more element?
• Try the same with a stack
• Try similar examples (also with a stack)
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DSA, Chapter 5: Overview
• Dynamic Data Structures

– Records,  Pointers
– Lists

• Abstract Data Types
– Stack, Queue
– Ordered Lists
– Priority Queue
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Ordered List
• In an ordered list Elements are ordered 

according to a key, which we assume to be an integer
• Example functions on ordered list:

– isEmpty()
– int maxKey(), int minKey()
– Element find(int key)
– Element floorEntry(int key)
– Element ceilingEntry(int key)
– insert(int key, Element x)
– print()
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Ordered List/2
• Declaration of an ordered list similar to unordered list
• Some operations (search, and hence insert and delete) 

are slightly different

class Node{
   int key; value Element;

   Node next;

}

class OList{

    Node head;

}
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Ordered List/3
• Insertion into an ordered list (Java):

void insert(int i, Element x) {
  Node q = new Node();
    q.key = i; q.element = x; q.next = NULL;
  Node p; 

  if (head == NULL || head.key > i) {
    q.next = head;
    head = q;
  } else {
…

void insert(int i, Element x) {
  Node q = new Node();
    q.key = i; q.element = x; q.next = NULL;
  Node p; 

  if (head == NULL || head.key > i) {
    q.next = head;
    head = q;
  } else {
…
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Ordered List/4
Insertion into an ordered list (Java):

void insert(int i, Element x) {
  …
  } else { 
    p = head;
    while (p.next != NULL && p.next.key < i)
      p = p.next;
    q.next = p.next;
    p.next = q;
  }
}

void insert(int i, Element x) {
  …
  } else { 
    p = head;
    while (p.next != NULL && p.next.key < i)
      p = p.next;
    q.next = p.next;
    p.next = q;
  }
}
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Ordered List
Cost of operations:
– Insertion: O(n)
– Check isEmpty: O(1)
– Search: O(n)
– Delete: O(n)
– Print: O(n)
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Suggested Exercises
• Implement an ordered list with the following 

functionalities: isEmpty, insert, search, delete, print
• Implement also deleteAllOccurrences
• As before, with a recursive version of: insert, search, 

delete, print
– are recursive versions simpler?

• Implement an efficient version of print which prints the 
list in reverse order 
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DSA, Chapter 5: Overview
• Dynamic Data Structures

– Records,  Pointers
– Lists

• Abstract Data Types
– Stack, Queue
– Ordered Lists
– Priority Queue
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Priority Queues
• A priority queue (PQ) is an ADT for maintaining a set S 

of elements, each with an associated value called key

• A PQ supports the following operations
– Insert(S,x) insert element x in set S (S := S   $ {x})
– ExtractMax(S) returns and removes the element of S 

with the largest key

• One way of implementing it: a heap
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Array Implementation of  Priority Queues
class PQueue{
   int maxSize, size;
   int[] A;

PQueue(int maxSize){
   this.maxsize = maxSize;

 A = new int[N];
   size = 0;}

int size(){…}

boolean isEmpty(){…} 

void insert(int key){ … }

int extractMax(){ … }

}

class PQueue{
   int maxSize, size;
   int[] A;

PQueue(int maxSize){
   this.maxsize = maxSize;

 A = new int[N];
   size = 0;}

int size(){…}

boolean isEmpty(){…} 

void insert(int key){ … }

int extractMax(){ … }

}

Java-style 
implementation 
of priority queue
of integers
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Priority Queues/2
• Removal of max takes constant time 

on top of Heapify Θ(log n)

int extractMax()
  // removes & returns largest element of A
  if size = 0 then throw Exception;
  max := A[1];
  A[1] := A[size];
  size := size-1;
  Heapify(A, 1, size);
  return max;

int extractMax()
  // removes & returns largest element of A
  if size = 0 then throw Exception;
  max := A[1];
  A[1] := A[size];
  size := size-1;
  Heapify(A, 1, size);
  return max;

We assume 
array indices
starting with 1
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Priority Queues/3
• Insertion of a new element

– enlarge the PQ and propagate the new element from 
last place “up” the PQ

– tree is of height log n, running time: Θ(log n)

void insert(A,x)
  if size = maxSize then throw Exception;
  size := size+1;
  i := size;
  while i > 1 and A[parent(i)] < x do
    A[i] := A[parent(i)];
    i := parent(i);
  A[i] := x;

void insert(A,x)
  if size = maxSize then throw Exception;
  size := size+1;
  i := size;
  while i > 1 and A[parent(i)] < x do
    A[i] := A[parent(i)];
    i := parent(i);
  A[i] := x;
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Priority Queues/4
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Priority Queues/5
• Applications: 

– job scheduling shared computing resources (Unix)
– event simulation
– as a building block for other algorithms

• We used a heap and an array to implement PQs 
Other implementations are possible
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Suggested Exercises
• Implement a priority queue
• Consider the PQ of previous slides. Draw the status of 

the PQ after each of the following operations:
• Insert 17,18,18,19
• Extract four  numbers
• Insert again 17,18,18,19

• Build a PQ from scratch, adding and inserting elements 
at will, and draw the status of the PQ after each 
operation
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Summary
• Records, Pointers
• Dynamic Data Structures

– Lists (head, head/tail, doubly linked)
• Abstract Data Types

– Type + Functions
– Stack, Queue
– Ordered Lists
– Priority Queues
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Next Chapter
• Binary Search Trees
• Red-Black Trees


