
Data Structures and Algorithms Spring-Summer 2015/16

Assignment 6 Radityo Eko Prasojo, Werner Nutt,
Rafael Penaloza, Guohui Xiao

Sorting and Heaps

1. Person Sorter

In this assignment we are applying sorting algorithms to objects instead of num-
bers. In the DSA_A6 zip file, you find templates for the three classess related to
this assignment, that is, the classes

1. Person,

2. PersonSorter, and

3. PersonSorterTest, which contains the JUnit tests.

Your task is to complete the class PersonSorter. The PersonSorter class
provides methods to ascendingly sort an array of instances of Person by a field
contained in the class Person. We provide you with two constants for two sort-
ing modes: BY_LAST_NAME and BY_DATE_OF_BIRTH, each of which corre-
sponds to a field of the class Person. The method sortBy then takes an array
of Person and a specified sorting mode as inputs and returns the sorted array.
For the class PersonSorter, your task is as follows.

1. Implement the two sorting methods mentioned above. Use a different sort-
ing algorithm for each method.

2. Implement as well a method sortByLastNameAndDateOfBirth. This
method is to sort an array of Person object by the last name and the date of
birth in lexicographic order, which means the following: Consider p1 and p2
to be two elements of the input array. If p1 and p2 have different last names,
then arrange them by their last name. Otherwise, if they have the same last
name, then arrange them by their date of birth. Use also a different sorting
algorithm for this method.



Finally, test your sorting algorithm using the JUnit tests provided in the class
PersonSorterTest.

(10 Points)

2. Sorting algorithm comparison

In this exercise you are asked to:

• Implement in Java the Quicksort algorithm for arrays of integers.

• Implement in Java the Hybrid Quicksort algorithm for arrays of integers, a
variant of Quicksort that depends on an additional parameter k. The algo-
rithm works as follows:

– if the size of the portion of the array to be sorted is greater than k, it
recursively calls the Hybrid Quicksort method with the same k;

– if the size of the portion of the array to be sorted is less than or equals
to k, it sorts that portion by using the Insertion Sort algorithm.

• Empirically compare these two sorting algorithms for different values of k
(k = {10, 20, 50, 100, . . .}) and different array sizes n (n = {20, 100, 1000, 10000}).
Find out for which values of k and for which array sizes Hybrid Quicksort
outperforms the standard Quicksort.

Provide:

1. the code that you developed for your experiments;

2. an analysis for which value of k and for which array size n the standard
Quicksort algorithm starts to outperform the hybrid one;

3. a discussion and possible explanation for the obtained running times.

Background: Many implementations of recursive sorting algorithms, like Quick-
sort or Mergesort, actually implement such a hybrid version.
Hint: Write Java code to make the tries and take the measurements, rather than
doing it manually with pencil and paper.

(20 Points)



3. Priority Queues

In this coursework we realize so-called priority queues using heaps. Priority
queues are a an abstract data-type that allows one to insert new elements into a
set and to extract the maximum of a set. Priority queues are a crucial building
block of many complex algorithms. They form an abstract data type because we
do not specify how to implement them.
You have learnt about heaps as a data structure that allows one to retrieve the max-
imum in a set of numbers in constant time. Moreover, a heap can be maintained
in logarithmic time if we insert a new element at the root. Your task will be to
realize priority queues using heaps in arrays.
Implement priority queues as instances of the class

public class PriorityQueue{
int maxSize;
int currentSize;
int[] queue;

public PriorityQueue(int maxSize){
this.maxSize = maxSize;
queue = new int[maxSize];
currentSize = 0;

}
}

An instance of this class can hold a heap of up to maxSize integers. Initially,
the heap has size 0, which means that none of the elements of the array queue is
considered to be a heap element.
You are now asked to implement the following methods for this class:

1. boolean empty(), which returns true iff the heap is empty;

2. boolean full(), which returns true iff the number of integers in the
heap is equal to maxSize;

3. int extractMax(), which returns the maximum element of the heap,
deletes it from the heap, and reorganizes the array so that it is a heap of the
remaining elements; after this operation the currentSize of the priority
queue is one less than it was before; clearly, the operation can only be ap-
plied if the priority queue is not empty, otherwise, an exception has to be
raised;

4. void insert(int n), which inserts a number n and reorganizes the
array so that it is a heap of the new, larger set of elements; after this op-
eration the currentSize of the priority queue is one greater than it was



before; clearly, the operation can only be applied if the priority queue is not
full, otherwise, an exception has to be raised.

Your task is to develop and implement efficient algorithms for these methods and
to test them. Explain all your solutions and answers to questions. You find a
template for the class PriorityQueue in the zip file DSA_A6.zip.

1. Develop JUnit tests for the methods above, covering both special and gen-
eral cases. You may want to write tests that combine several calls to the
methods you want to write. For instance, you may want to insert several
numbers and then execute extractMax.

2. Write pseudocode for the methods extractMax and insert and for
auxiliary methods that you may need.

3. What is the asymptotic worst-case complexity of your algorithms?

4. Implement the four methods listed above.

(10 Points)

Deliverables.

1. Your implementation of the class PersonSorter in Exercise 1 and the
class PriorityQueue in Exercise 3, as well as the code that you wrote
for your experiments in Exercise 2.

2. Write one report for all tasks.

Combine all deliverables into one zip file, which you submit via the OLE website
of the course. Please, follow the “Instructions for Submitting Course Work” on
the Web page with the assignments, when preparing your coursework.
Submission: Until Mon, 2 May 2016, 23:55 hrs, to the OLE submission page of

Lab A / Lab B / Lab C

http://www.inf.unibz.it/~nutt/Teaching/DSA1516/DSAAssignments/instructions.pdf
https://ole.unibz.it/mod/assign/view.php?id=12480
https://ole.unibz.it/mod/assign/view.php?id=12481
https://ole.unibz.it/mod/assign/view.php?id=12482

