
Distributed Systems Spring-Summer 2016

Lab Simon Razniewski/Florian Klement

Raspberry Pi Lab II – Distributed Computing

Distributed Computing involves the breaking down a computational problem into several
parallel tasks to be completed by two or more computers in a network which form a
distributed system. This combines the computational power of several computers to solve
large problems which involve the processing of large data or require a huge number of
iterations.

In this lab, we will experiment with a classical problem, sorting. Sorting can be easily
parallelized using Mergesort1.

Speedup in Distributed Computing

Amdahls law2 provides a way to estimate the speedup of running a program on several

machines. It requires a single parameter p, which describes the fraction of the code that can

be parallelized. Given n machines, the speedup S compared with running the program on a

single machine is calculated as:

 S =
1

1−𝑝+
𝑝

𝑛

Example: Consider a program of which 90% can be parallelized (p=0.9). Then the speedup of

running the program on 3 machines is
1

1−0.9+
0.9

3

= 2.5.

Distributed Mergesort

You can download Python code for distributed Mergesort from https://goo.gl/fKnN1L. The

provided code breaks the data to be sorted into n partitions (with n being the number of

machines involved), which each locally sort their data, then send their results back, where

they are finally merged.

1 https://en.wikipedia.org/wiki/Merge_sort
2 https://en.wikipedia.org/wiki/Amdahl's_law

https://goo.gl/fKnN1L
https://en.wikipedia.org/wiki/Merge_sort
https://en.wikipedia.org/wiki/Amdahl's_law

MergeSort.py implements the classical Mergesort algorithm, while Merge1.py creates an

array of 100000 elements an lets Mergesort run on it. You can run Merge1.py from the

command line by executing

sudo python Merge1.py

To distribute the task to two RPis, first take note of the IP address of the server (you may
want to set a static address, if there is no DHCP server). Then, run MergeServer.py on the
server.

Insert the IP of the server into MergeClient.py. When the server prints "Waiting for client..."
you can, run MergeClient.py on the second Pi.

Tasks

1. Estimate the speedup of the distributed Mergesort code when distributing the

sorting of 10000, 50000, 100000, 150000 and 200000 numbers using 2 machines.

Hint: To determine the fraction of the Mergesort that can be parallelized, remember

that sorting has complexity O(n*log n), while in the end, there is a centralized merge

step for the individual results, which runs in O(n) time.

2. Measure the runtime of the local Mergesort and the distributed Mergesort using

the problem sizes described above.

3. Plot the runtimes using e.g. Excel.

4. Try to explain any differences to your theoretical calculation from (1).

5. Team up with another group in order to run Mergesort distributed over 3 and 4

machines. Again, take note of the runtimes and compare them with the

theoretically possible speedup.

Note: Please leave the desktop machines in their original state when finishing the lab, i.e.,

plug back any monitor/Ethernet/other cables.

Further Reading

 A Comparison of Parallel Sorting Algorithms on Different Architectures

(http://dl.acm.org/citation.cfm?id=892860)

http://dl.acm.org/citation.cfm?id=892860

