Sorting: Heapsort and Quicksort

Data Structures and Algorithms

Chapter 4

Heapsort and Quicksort

Werner Nutt

Data Structures and Algorithms 1

Acknowledgments

* The course follows the book “Introduction to Algorithms",
by Cormen, Leiserson, Rivest and Stein, MIT Press
[CLRST]. Many examples displayed in these slides are
taken from their book.

* These slides are based on those developed by
Michael Bohlen for this course.
(See http://www.inf.unibz.it/dis/teaching/DSA/)
* The slides also include a number of additions made by

Roberto Sebastiani and Kurt Ranalter when they taught
later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)

nsort and Quicksort

DSA, Chapter 4: Overview

* About sorting algorithms

* Heapsort
— complete binary trees
— heap data structure

* Quicksort
— a popular algorithm
— very fast on average

Data Structures and Algorithms

DSA, Chapter 4: Overview

* About sorting algorithms
* Heapsort

* Quicksort

Data Structures and Algorithms

nsort and Quicksort

Why Sorting?

* “When in doubt, sort” —
one of the principles of algorithm design

* Sorting is used as a subroutine in many algorithms:

— Searching in databases:
we can do binary search on sorted data

— Element uniqueness, duplicate elimination

— Alarge number of computer graphics and
computational geometry problems

Why Sorting?/2

* Sorting algorithms represent
different algorithm design techniques

* One can prove that any sorting algorithm on arrays
needs at least n log n steps

==> Sorting has a lower bound of Q(n log n)

* This lower bound of Q(n log n)
Is used to prove lower bounds of other problems

nsort and Quicksort

Sorting Algorithms So Far

* Insertion sort, selection sort, bubble sort
— worst-case running time ©(n?)
— In-place

* Merge sort

— worst-case running time ©(n log n)
— requires additional memory 0(n)

Data Structures and Algorithms 7

DSA, Chapter 4: Overview

* About sorting algorithms

* Heapsort

* Quicksort

Data Structures and Algorithms

nsort and Quicksort

Selection Sort

SelectionSort (A[l..n]):
for 1 ;= 1 to n-1

A: Find the smallest element among A[i..n]

B: Exchange it with A[1i]

* Atakes ©(n) and B takes ©(1): ©(n?) in total
* ldea for improvement: smart data structure to
—doAand Bin®(1)

— spend O(log n) time per iteration to maintain the
data structure

— get a total running time of O(n log n)

Binary Trees

Each node may have a

nsort and Quicksort

left and right child @

— The left child of 7 is 1

— The right child of 7 is 8

— 3 has no left child

— 6 has no children a
Each node has at most

one parent @

— 1is the parent of 4
The root has no parent
— 9is the root

A leaf has no children
— 6, 4 and 8 are leafs

Data Structures and Algorithms

10

Binary Trees/2

* The depth (or level) of a node
X is the length of the path from

the root to x @
— The depth of 1 is 2 \
— The depth of 9is O G
* The height of a node x is the /
length of the longest path from @ @\

X to a leaf
— The heightof 7 is 2

* The height of a tree is the
height of its root @

— The height of the tree is 3

11

nsort and Quicksort

Binary Trees/3

* The right subtree of a node x is
the tree rooted at @

the right child of x \

— The right subtree of 9 is the tree 9
shown in blue

* The left subtree of a node x is

the tree rooted at G 0

the left child of x

— The left subtree of 9 is the tree
shown in red Q

Data Structures and Algorithms 12

nsort and Quicksort

Complete Binary Trees

* A complete binary tree is a binary tree where
— all leaves have the same depth
— all internal (non-leaf) nodes have two children

What is the number of nodes
in a complete binary tree of height h?

* A nearly complete binary tree is a binary tree where
— the depth of two leaves differs by at most 1

— all leaves with the maximal depth are
as far left as possible

Data Structures and Algorithms 13

nsort and Quicksort

Heaps

* Abinary tree is a binary heap iff
— it iIs a nearly complete binary tree
— each node is greater than or equal to all its children

* The properties of a binary heap allow for

— efficient storage in an array
(because it is a nearly complete binary tree)

fast sorting
(because of the organization of the values)

Data Structures and Algorithms 14

nsort and Quicksort

Heaps/2

Heap property
A[Parent(i)] = AJi]

Parent(i)
return |i/2|

Left(i)
return 2i

Right(i)

return 2i+1 Level: o0

Data Structures and Algorithms

Heaps/3

* Notice the implicit tree links in the array:
children of node j are 2/ and 2/+1

* The heap data structure can be used
to implement a fast sorting algorithm

* The basic elements are 3 procedures:

— Heapify: reconstructs a heap
after an element was modified

— BuildHeap: constructs a heap from an array
— HeapSort: the sorting algorithm

16

Heapify

* Input:
index i/ in array A, number n of elements
* Precondition:
— binary trees rooted at Left(i) and Right(i) are heaps

— A[i] might be smaller than its children,
thus violating the heap property

* Postcondition:
— binary tree rooted at / is a heap
* How it works: Heapify turns A into a heap

— by moving Afi] down the heap
until the heap property is satisfied again

17

nsort and Quicksort

2
10 1.Call Heapify(A,2)
6 \ 7 2.Exchange A[2] with A[4] and
@ @ recursively call Heapify(A,4)
8 9 10 3.Exchange A[4] with A[9] and
é '8 é recursively call Heapify(A,9)

4 .Node 9 has no children,
SO we are done

Data Structures and Algorithms 18

___________ Chapterda
Heapify Algorithm

Heapify (A, 1,n)

1 c= 2% // 1 := Left (i)

r := 2*i+1; // r := Right (i)

Maxpos := 1

if 1 <= n and A[1l] > A[1]
then maxpos := 1

if r <= n and A[r] > A[max]
then maxpos := ¢

if max !'!= 1 then
swap (A, 1, maxpos)
Heapify (A, maxpos,n)

19

nsort and Quicksort

Correctness of Heapify

Induction on the depth of Subtree(i),
the tree rooted at position i:

depth=0 =>» I>n(andr>n)
= maxpos =i
= Heapify does nothing

Not doing anything is fine,
since Subtree(i) is a singleton tree
(and therefore a heap)

Data Structures and Algorithms 20

Correctness of Heapify/2

depth=d+1

Assume Subtree(i) is not a heap
= Ali] < A[l] or A[i] < A[r]
Wilog, assume A[r] = max {A[i], A[l], A[r]} and
Alr] > Afi], Alr] > All]

= maxpos =r
After the return of Heapify(A,imax,n),

— Subtree(r) is a heap (by induction hypothesis)

— Subtree(l) is a heap (by assumption)

— A[i] = A[l], Al[i] = A[r] (by code of Heapify)

= AJi] 2 all elements in Subtree(l), Subtree(r)

= Subtree(i) is a heap
e

21

Heapify: Running Time

The running time of Heapify
on a subtree of size n rooted at |
includes the time to

— determine relationship between elements: ©(1)
— run Heapify on a subtree rooted at one of the children of i

* 2n/3 is the worst-case size of this subtree
(half filled bottom level)

* T(n) =T(2n/3) + (1) implies T(n) = O(log n)
— alternatively
* running time on a node of height h is O(h) = O(log n)

22

Build a Heap

* Convert an array A[1...n] into a heap
* Notice that the elements in the array segment
A[(|n/2|+1)..n]
are 1-element heaps to begin with
=» only the first half of indices may need corrections

BuildHeap (A)

for i := |n/2| downto 1 do
Heapify (A,

1, n)

23

nsort and Quicksort

* Heapify (A, 7, 10)
* Heapify (A, 6, 10)
* Heapify (A, 5, 10)

Data Structures and Algorithms

nsort and Quicksort

Building a Heap/3

2/6\3 2/‘\3
4/" 5 6 7 4/" 5 6 7
ey o oy o
4132160910 1487 413 14169102 8 7|

°* Heapify (A, 4, 10)

Data Structures and Algorithms

nsort and Quicksort

Building a Heap/4

° Heapify (A, 3, 10)

Data Structures and Algorithms

nsort and Quicksort

Building a Heap/5

° Heapify (A, 2, 10)

Data Structures and Algorithms

nsort and Quicksort

Building a Heap/6

° Heapify (A, 1, 10)

Data Structures and Algorithms

Building a Heap: Analysis

* Correctness:
Loop invariant:

When Heapify(A,i,n) is called,
then Subtree(j) is a heap, for all j > i

* Running time:
n calls to Heapify = n O(log n) = O(n log n)

(non-tight bound, but good enough for an
overall O(n log n) bound for Heapsort)

* Intuition for a tight bound of O(n)

most of the time Heapify works on
heaps with fewer than n element

29

Building a Heap: Analysis/2

* Tight bound:
— an n-element heap has height log n
— the heap has n/2" nodes of height h

— cost for one call of Heapify is O(h)
logn logn

T(n) Z th(h) O(nZ

* Math: .
k— — =Y k(1
kZ:;kx (1- x)* % Z(/%) S (1- 1/)

log n

I'(n) O(HZ i) = ((1 1/2)) =0(n)

HeapSort

Heapsort (A7)
BuildHeap (2) O(n)
heapsize := A.length
for i := A.length downto 2 do n times
swap (A, 1,1) O(1)
heapsize-- O(1)
Heapify (A, 1, heapsize) O(log n)

The total running time of Heapsort is
O(n) + n * O(log n) = O(n log n)

31

Sorting: Heapsort and Quicksort

Heapsort & o
14 ORI ® ©
LT RSV Ao

Pos®s %es’e "se’e

(2)

“ee’e o°ece’e o ee’s

Data Structures and Algorithms 32

nsort and Quicksort

Correctness of Heapsort

Loop invariant

* A[l..heapsize] isaheap
containing the heapsize least elements of A

* Alheapsize+l.. (A.length)] Is sorted
containing the A. length-heapsize
greatest elements of A

That is how Heapsort was designed!

Data Structures and Algorithms

33

Heapsort: Summary

* Heapsort uses a heap data structure to improve
selection sort and make the running time asymptotically
optimal

* Running time is O(n log n) — like Merge Sort, but unlike
selection, insertion, or bubble sorts

* Sorts in-place — like insertion, selection or bubble sort,
but unlike merge sort

* The heap data structure is also used for other things
than sorting

34

DSA, Chapter 4: Overview

* About sorting algorithms
* Heapsort

* Quicksort

Data Structures and Algorithms

nsort and Quicksort

35

nsort and Quicksort

Quicksort

Characteristics

— sorts in place
(like insertion sort, but unlike merge sort)
l.e., does not require an additional array

— very practical, average sort performance O(n log n)
(with small constant factors), but worst case O(n?)

Data Structures and Algorithms 36

Quicksort: The Principle

When applying the Divide&Conquer principle to sorting,
we obtain the following schema for an algorithm:

* Divide array segment A[l..r] into two subsegments,
say A[l..m] and A[m+1,r]

* Conquer: sort each subsegment by a recursive call

* Combine the sorted subsegments
into a sorted version of the original segment AJl..r]

37

Quicksort: The Principle/2

Merge Sort takes an extreme approach in that
* no work is spent on the division
* a lot of work is spent on the combination

What does an algorithm look like
where no work is spent on the combination?

Data Structures and Algorithms

Chapter 4 Sorting: Heapsort and Quicksort

38

Quicksort: The Principle/3

If no work is spent on the combination of the sorted
segments, then, after the recursive call,

all elements in the left subsegment AJl..m] must be
< all elements in the right subsegment A[m+1..r]

However, the recursive call can only have sorted the
segments!

We conclude that the division must have partitioned AJl..r]
into

— a subsegment with small elements A[l..m]

— a subsegment with big elements A[m+1..r]

39

Quicksort: The Principle/4

In summary:

A divide-and-conquer algorithm where

* Divide = partition array into 2 subarrays such that
elements in the lower part
< elements in the higher part

* Conquer = recursively sort the 2 subarrays
* Combine = trivial since sorting is done in place

40

Quick Sort Algorithm: Overview

INPUT: A[1l..n] - an array of integers
1,r - integers satisfying 1=<1l=<r=n
OUTPUT: permutation of the segment A[l..r] s.t.
A[T]=<A[1+1]=...=<A[r]

Quicksort (A, 1, r)
if 1 < r then
m := Partition(A,l,r)
Quicksort (A,1l,m-1)
Quicksort (A, m+1, r)

Partition divides the segment A[l..r] into
— a segment of “little elements™ A[l..m-1]
— a segment of “big elements” A[m+1..r],
with A[m] in the middle between the two

Partition

INPUT: A[1l..n] - an array of 1integers
1,r — integers satisfying 1l<l<r=n
OUTPUT: m - an integer with T=sms=r
a permutation of A[l..r] such that
A[i]<A[m] for all 1 with T<1i<m
Alm]<A[i] for all i with m<i=<r

int Partition (A, 1, r)

p := A[m]; // pivot, used for the split
el := 1-1; // end of the little ones
for bu := 1 to r-1 do

// bu is the beginning of the unknown area
if Afbu] < p
then swap(A,el+l,bu); el++;
// all elements < p are little ones
swap (A,el+1,m)
// move the pivot into the middle position
return el+1

Partition: Loop Invariant

This version of Partition has the following loop invariant:
— A[i] < p,foralliwithl < i £ el
(all little ones are < p)
— A[i] = pforall i withel < i < bu
(all big ones are = p).
Clearly,

— this holds at the beginning of the execution
— this Is maintained during the loop
— the loop terminates.

At the end of the loop, A[1. .el] comprises the little ones,
and A[el+1l..r-1] comprises the big ones.

Sincep = A[r] is a big one, the postcondition holds after
the swap of A[el+1] and A[p].

43

Partitioning from the Endpoints

There is another approach to partitioning, due to Tony Hoare,
the inventor of Quicksort.

As before, we choose p:=A[r] as the pivot.

Then repeatedly, we

— walk from right to left until we find an element < p
— walk from left to right until we find an element = p

— swap those elements.

Note that in this approach, we have no control where p ends up.
Therefore, Partition returns an index m such that

Ali] < A[j], forall i,j with I <i<mand m+1 <j<r
Consequently, Quicksort(A,l,r) launches two recursive calls
Quicksort(A,I,m) and Quicksort(A,m+1,r)

44

Partitioning from the Endpoints/2

i1

nsort and Quicksort

17

int Partltlon A,l,r)

19

23

p =
i:=ll .<p10<

J = rt+l
while TRUE
repeat] := j-1
until A[]j] <p
repeat 1 := i+l
until A[i] =2 p
if i<

then swap(A,i,])
else return 1

Data Structures and Algorithms

45

Quicksort with

Partitioning from the Endpoints

INPUT: A[1l..n] - an array of integers
1,r — integers satisfying 1<1l=<rs=n
OUTPUT: permutation of the segment A[l..r] s.t.
A[1]<A[T+1]=...=A[r]

Quicksort (A, 1, r)
if 1 < r then
m := Partition(A,l,r)
Quicksort (A, 1, m)
Quicksort (A, m+1, r)

* Note the different parameters of the first recursive call!

46

nsort and Quicksort

Analysis of Quicksort

The analysis does not depend on the variant
* Assume that all input elements are distinct

* The running time depends on the distribution of splits

Data Structures and Algorithms

47

nsort and Quicksort

Best Case

If we are lucky, Partition splits the array evenly:
T(n) =2 T(n/2) + ©(n)

A n > N
/n/2\/ \/H/Q\ -on
n/4 y4 n/4 n/4 > n

/N NN

logn n/8 n/8 n/8 n/8 n/8 n/8 n/é }/8H n
/NN /N /N /N /N N N

1 11111111111 111 1 —®» 1

O(n log n)

Data Structures and Algorithms 48

nsort and Quicksort

Worst Case

What is the worst case?
* One side of the partition has one element|

* T(n) =T(n-1)+ T(1) + ©(N)
=T(n-1)+ 0 + B(n)

= Yo

oY k)
k=l

= O(n?)

Data Structures and Algorithms

49

L i
1 n-1 >
RN

Data Structures and Algorithms

nsort and Quicksort

n-1

n-2

O(n)

50

Worst Case/3

* When does the worst case appear?
=> one of the partition segments is empty

— Input is sorted
— Input is reversely sorted

* Similar to the worst case of Insertion Sort
(reverse order, all elements have to be moved)

* But sorted input yields the best case for insertion sort

51

nsort and Quicksort

Analysis of Quicksort

Suppose the splitis 1/10 : 9/10

n > 1N
(1/10)n (9/10)n > n
19]og n — T~ —
(1/100)n (9/100)n (9/100)n (81/10)n > N
lo/9logn / \ / \ / \
1

(81/1000)n (729/1000)n ——» n

A

—» <n

Data Structures and Algorithms 52

An Average Case Scenario

Suppose, we alternate lucky
and unlucky cases to get an
average behavior

- em)

L(n) = 2U(n/2) + ©(n) lucky
U(n) =L(n-1) + ®(n) unlucky

we consequently get

L(n) =2(L(n/2 - 1) + ®(n)) + B(n)
=2L(n/2 - 1) + ©(n)
= 0(n log n)

n ~ 0O(n)

53

An Average Case Scenario/2

* How can we make sure that we are usually lucky?
— Partition around the “middle” (n/2th) element?

— Partition around a random element
(works well in practice)

* Randomized algorithm
— running time is independent of the input ordering
— no specific input triggers worst-case behavior

— the worst-case is only determined by the output of the
random-number generator

54

Randomized Quicksort

* Assume all elements are distinct
* Partition around a random element

* Consequently, all splits
1:n-1,
2:n-2,

n-1:1
are equally likely with probability 1/n.

* Randomization is a general tool to improve algorithms
with bad worst-case but good average-case complexity.

55

nsort and Quicksort

Randomized Quicksort/2

int RandomizedPartition (A, 1, r)
1 := Random(l, r)
swap (A,1, 1)
return Partition(A,1l,r)

RandomizedQuicksort (A, 1, r)
if 1 < r then
m := RandomizedPartition (A, l,r)
RandomizedQuicksort (A, 1,m-1)
RandomizedQuicksort (A, m+1, r)

Data Structures and Algorithms

56

Summary

* Heapsort

— same idea as Max sort, but heap data structure
helps to find the maximum quickly

— a heap is a nearly complete binary tree,
which here is implemented in an array

— worst case is nlogn
* Quicksort

— partition-based: extreme case of D&C,
no work is spent on combining results

— popular, behind Unix "sort” command
— very fast on average
— worst case performance is quadratic

57

Comparison of Sorting Algorithms

Running time in
seconds, n=2048
Absolute values are
not important;
compare values with
each other

Relate values to
asymptotic running
time (n log n, n?)

ordered |random |inverse
Insertion |0.22 50.74 103.8
Selection |58.18 58.34 73.46
Bubble 80.18 128.84 | 178.66
Heap 2.32 2.22 2.12
Quick 0.72 1.22 0.76

58

nsort and Quicksort

Next Chapter

* Dynamic data structures
— Pointers
— Lists, trees
* Abstract data types (ADTSs)
— Definition of ADTs
— Common ADTs

Data Structures and Algorithms 59

