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[CLRST]. Many examples displayed in these slides  are 
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• These slides are based on those developed by 
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(See http://www.inf.unibz.it/dis/teaching/DSA/)

• The slides also include a number of additions made by 
Roberto Sebastiani and Kurt Ranalter when they taught 
later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)
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DSA, Chapter 3: Overview

• Divide and conquer

• Merge sort, repeated substitutions

• Tiling

• Recurrences
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Divide and Conquer
Principle: 
If the problem size is small enough to solve it trivially, 
solve it. 
Else:
● Divide: Decompose the problem 

     into one or more disjoint subproblems.
● Conquer: Use divide and conquer recursively 

     to solve the subproblems.
● Combine: Take the solutions to the subproblems 

     and combine the solutions 
     into a solution for the original problem.
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Picking a Decomposition

• Finding a decomposition requires some practice 
and is the key part.

• The decomposition has the following properties:
– It reduces the problem to a “smaller problem”.
– Often the smaller problem is of the same kind as 

the original problem.
– A sequence of decompositions 

eventually yields the base case.
– The decomposition must contribute 

to solving the original problem.
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Merge Sort
Sort an array by 
– Dividing it into two arrays.
– Sorting each of the arrays.
– Merging the two arrays.

 17 24 31 45 50 63 85 96

 24 45 63 85

  85 24 63 45 17 31 96 50

 85 24 63 45

  17 31 50 96  17 31 96 50
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Merge Sort Algorithm

Divide: If segment S has at least two elements,
divide S into segments S1 and S2: 
S1 contains the first  ⎡n/2⎤ elements and 
S2 contains the remaining ⎣n/2⎦ elements

Conquer: Sort segments S1 and S2 
using merge sort

Combine: Merge the sorted segments S1 and S2,
into one sorted auxiliary array,  
and copy the auxiliary array back into segment S
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MergeSort Example/1

85  24  63  45   17  31  96  50
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MergeSort Example/2

                 17  31  96  50

85  24  63  45
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MergeSort Example/3

                 17  31  96  50

        63  45

85  24
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MergeSort Example/4

                 17  31  96  50

        63  45

    24

85
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MergeSort Example/5

                 17  31  96  50

        63  45

85  2485
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MergeSort Example/6

                 17  31  96  50

        63  45

85  

24

85
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MergeSort Example/7

                 17  31  96  50

        63  45

85  2485 24
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MergeSort Example/8

                 17  31  96  50

        63  45

24  85 
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MergeSort Example/9

                 17  31  96  50

24  85  63  4524  85 
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MergeSort Example/10

                 17  31  96  50

24  85  

63  45

24  85 
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MergeSort Example/11

                 17  31  96  50

24  85  

    45

63

24  85 
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MergeSort Example/12

                 17  31  96  50

24  85  

    45

24  85 

63
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MergeSort Example/13

                 17  31  96  50

24  85  

    

45

24  85 

63
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MergeSort Example/14

                 17  31  96  50

24  85  

    

24  85 

63 45
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MergeSort Example/15

                 17  31  96  50

24  85  

45  63 

24  85 
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MergeSort Example/16

                 17  31  96  50

24  85  24  85 45  63 
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MergeSort Example/17

                 17  31  96  50

24  45  63  85 
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MergeSort Example/18

                 17  31  96  5024  45  63  85 
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MergeSort Example/19

                 

17  31  96  50

24  45  63  85 
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MergeSort Example/19

                 

17  31  96  50

24  45  63  85 
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MergeSort Example/20

                 

17  31  50  96

24  45  63  85 
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MergeSort Example/21

                 24  45  63  85 17  31  50  96
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MergeSort Example/22

17  24  31  45   50  63  85  96 
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Merge Sort: Algorithm

MergeSort(A,l,r)
   if l < r then
      m := ⎡(l+r)/2⎤
      MergeSort(A,l,m)
      MergeSort(A,m+1,r)
      Merge(A,l,m,r)

Merge(A,l,m,r)
Take the smallest of the two first elements 
of the segments A[l..m] and A[m+1..r] 
and put it into an auxiliary array. 
Repeat this, until both segments are empty. 
Copy the auxiliary array into A[l..r]. 
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Merge Sort Summarized

• To sort n numbers
– if n=1 done.
– recursively sort 2 lists of 
⎡n/2  ⎤ and ⎣n/2  ⎦ elements, 
elements, respectively.

– merge 2 sorted lists of 
lengths n/2 in time Θ(n).

• Strategy
– break problem into similar 

(smaller) subproblems
– recursively solve 

subproblems
– combine solutions to 

answer

 1  5  2  4    6  3  2  6

1  5 2  4  6 3 2  6

 1  5  2  4  6  3  2  6

1 5 2 4 6 3 2 6

1  5 2  4 3  6 2  6

  1  2  2  3  4  5  6  6

 1  2  4  5  2  3  6  6
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Running Time of Merge Sort
The running time of a recursive procedure 
can be expressed as a recurrence:

T.n/={ 0.1/
2T.n/2/,0.n/

if n=1
if n-1}

T .n/={ solvingtrivial problem
NumPieces∗T .n /ReductionFactor /,divide,combine

if n=1
if n-1 }
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Repeated Substitution Method

The running time of Merge Sort (assume n=2k).

T(n) = 2T(n/2) + n  substitute
        = 2(2T(n/4) + n/2) + n  expand
        = 22T(n/4) + 2n  substitute
        = 22(2T(n/8) + n/4) + 2n  expand
        = 23T(n/8) + 3n  observe pattern
T(n) = 2kT(n/2k) + k n 
        = 2log nT(n/n) + n log n 
        = n + n log n

T .n/={ 0.1/
2T.n /2/,0.n/

if n=1
if n-1}
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Tiling

A tromino tile:

A 2kx2k board with a 
hole:

A tiling of the board 
with trominos:
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Tiling: Trivial Case (k = 1)

Trivial case (k = 1): tiling a 2x2 board with a hole:

Idea: reduce the size of the original problem, 
so that we eventually get to the 2x2 boards, 
which we know how to solve.
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Tiling: Dividing the Problem/2

Idea: insert one tromino at the center to “cover” three 
holes in each of the three smaller boards

• Now we have four boards 
with holes of the size 
2k-1x2k-1.

• Keep doing this division, until 
we get the 2x2 boards with 
holes – we know how to tile 
those. 
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Tiling: Algorithm

INPUT:  k – log of the board size (2kx2k board), 
        L – location of the hole. 
OUTPUT: tiling of the board

Tile(k, L)
  if k = 1 then //Trivial case
    Tile with one tromino 
    return
  Divide the board into four equal-sized boards
  Place one tromino at the center to cover 3 additional

    holes
  Let L1, L2, L3, L4 be the positions of the 4 holes   
  Tile(k-1, L1)
  Tile(k-1, L2) 
  Tile(k-1, L3) 
  Tile(k-1, L4) 
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Tiling: Divide and Conquer
Tiling is a divide-and-conquer algorithm:

The problem is trivial if the board is 2x2, else:

Divide the board into four smaller boards 
(introduce holes at the corners of the 
 three smaller boards 
 to make them look like original problems).

Conquer using the same algorithm recursively

Combine by placing a single tromino 
in the center to cover the three new holes. 
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Karatsuba Multiplication
Multiplying two n-digit (or n-bit) numbers costs n2 digit
multiplications, using a straightforward procedure.

Observation:
23*14 = (2×101 +3)*(1×101 +4) =
= (2*1)102+ (3*1 + 2*4)101 + (3*4) 

To save one multiplication we use a trick:
(3*1 + 2*4) = (2+3)*(1+4) - (2*1) - (3*4) 

                                                                                      Original by S. Saltenis, Aalborg
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Karatsuba Multiplication/2
To multiply a and b, which are n-digit numbers, we use a
divide and conquer algorithm. We split them in half: 

a = a1 ×10n/2+ a0  and b = b1 ×10n/2+ b0

Then:

a *b = (a1 *b1 )10n+ (a1 *b0 + a0 *b1)10n/2 + (a0 *b0 ) 

Use a trick to save a multiplication:

(a1 *b0 + a0 *b1) = (a1 +a0)*(b1 +b0) - (a1 *b1 ) - (a0 *b0 ) 
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Karatsuba Multiplication in Java

public static BigInteger karatsuba(BigInteger x, BigInteger y) {
//
// Copyright © 2000-2011, Robert Sedgewick and Kevin Wayne.
//

// length of number
int N = Math.max(x.bitLength(), y.bitLength());

// number of bits divided by 2, rounded up
N = (N / 2) + (N % 2);
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// x = a1 2^N + a0, y = b1 2^N + b0
BigInteger a1 = x.shiftRight(N);
BigInteger a0 = x.subtract(a1.shiftLeft(N));
BigInteger b1 = y.shiftRight(N);
BigInteger b0 = y.subtract(b1.shiftLeft(N));

// compute sub-expressions
BigInteger a0b0 = karatsuba(a0, b0);
BigInteger a1b1 = karatsuba(a1, b1);
BigInteger a0PLUSa1MULTb0PLUSb1 = karatsuba(a0.add(a1), b0.add(b1));

Return a0b0.add(a0PLUSa1MULTb0PLUSb1
                             .subtract(a0b0).subtract(a1b1)
                             .shiftLeft(N))
                    .add(a1b1.shiftLeft(2 * N));
}

Karatsuba Multiplication in Java/2
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Karatsuba Multiplication/3
The number of single-digit multiplications performed 
by the algorithm can be described by a recurrence:
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Recurrences
• Running times of algorithms with recursive calls can be 

described using recurrences.
• A recurrence is an equation or inequality 

that describes a function 
in terms of its value on smaller inputs. 

• For divide and conquer algorithms:

• Example: Merge Sort

T .n/={ solving trivial problem
NumPieces∗T .n /SubProbFactor/,divide,combine

if n=1
if n-1 }

T .n/={ 0.1 /
2T.n /2/,0.n /

if n=1
if n-1 }
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Solving Recurrences

• Repeated (backward) substitution method
– Expanding the recurrence by substitution and noticing 

a pattern (this is not a strictly formal proof).
• Substitution method

– guessing the solutions
– verifying the solution by mathematical induction

• Recursion trees
• Master method

– templates for different classes of recurrences
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Repeated Substitution (Example)
Let’s find the running time of merge sort
(assume n=2b).

1   if 1
( )

2 ( / 2 )   if 1
n

T n
T n n n

7⎧
7⎨ 5 8⎩

T(n) = 2T(n/2) + n  substitute
= 2(2T(n/4) + n/2) + n  expand
= 22T(n/4) + 2n  substitute
= 22(2T(n/8) + n/4) + 2n  expand
= 23T(n/8) + 3n  observe pattern
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Repeated Substitution (Example)/2

From       T(n) = 23T(n/8) + 3n 
we get     T(n) = 2kT(n/2k) + kn 

An upper bound for k is log n:

    T(n) = 2log nT(n/n) + n log n
    T(n) = n + n log n
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Repeated Substitution (Example)/2

From       T(n) = 23T(n/8) + 3n 
we get     T(n) = 2kT(n/2k) + kn 

If n = 2k, then k = log n: 

    T(n) = 2log nT(n/n) + n log n
    T(n) = n + n log n
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Repeated Substitution Method
The procedure is straightforward:
– Substitute, Expand, Substitute, Expand, …
– Observe a pattern and determine the expression after 

the i-th substitution.
– Find out what the highest value of i (number of 

iterations, e.g., log n) should be to get to the base 
case of the recurrence (e.g., T(1)).

– Insert the value of T(1) and the expression of i into 
your expression.
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Analysis of Sort Merge
• Let’s find a more exact running time of merge sort 

(assume n=2b).

2   if 1
( )

2 ( / 2 ) 2 3   if 1
n

T n
T n n n

7⎧
7⎨ 5 5 8⎩

T(n) = 2T(n/2) + 2n + 3  substitute
        = 2(2T(n/4) + n + 3) + 2n +3  expand
        = 22T(n/4) + 4n + 2*3 + 3  substitute
        = 22(2T(n/8) + n/2 + 3) + 4n + 2*3 + 3  expand
        = 23T(n/23) + 2*3n + (22+21+20)*3  observe pattern
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Analysis of Sort Merge/2

T(n) = 2iT(n/2i) + 2in + 3 

An upper bound for i is log n

= 2log nT(n/2log n) + 2 n log n + 3*(2log n - 1)
= 5n + 2 n  i n – 3

           = Θ(n log n)
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Substitution Method 
The substitution method to solve recurrences entails two 
steps:
– Guess the solution.
– Use induction to prove the solution.

Example:
– T(n) = 4T(n/2) + n
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Substitution Method/2

1) Guess T(n) = O(n3), i.e., T(n) is of the form cn3

2) Prove T(n) 9 cn3 by induction

T(n) = 4T(n/2) + n  recurrence
 9 4c(n/2)3 + n induction hypothesis
= 0.5cn3 + n simplify
= cn3 – (0.5cn3 – n) rearrange
 9 cn3 if c>=2 and n>=1

Thus T(n) = O(n3)
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Substitution Method/3

Tighter bound for T(n) = 4T(n/2) + n:

Try to show T(n) = O(n2)

Prove T(n) 9 cn2 by induction

T(n) = 4T(n/2) + n
         9 4c(n/2)2 + n
        = cn2 + n
        NOT 9  cn2   

      => contradiction
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Substitution Method/4

• What is the problem? Rewriting
  T(n) = O(n2) = cn2 + (something positive)
as T(n) 9 cn2

does not work with the inductive proof.
• Solution: Strengthen the hypothesis for the inductive 

proof:
– T(n)   9  (answer you want) - (something > 0)
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Substitution Method/5

Fixed proof: strengthen the inductive 
hypothesis by subtracting lower-order terms:

Prove T(n) 9 cn2 - dn by induction

T(n) = 4T(n/2) + n
       9 4(c(n/2)2 – d(n/2)) + n
       = cn2 – 2dn + n
       = cn2 – dn – (dn – n)
       9  cn2 – dn if d  1:



Master Informatique 																																		58Data Structures and Algorithms

Part	3 Divide	and	Conquer

Recursion Tree
A recursion tree is a convenient way to visualize what 
happens when a recurrence is iterated.
– Good for ”guessing” asymptotic solutions to 

recurrences 

.1
4
n/

2

T. 1
2
n/T .1

4
n/

n2

.1
2
n/

2n2

T. 1
1 6

n/ T .1
8
n/ T. 1

8
n/ T. 1

4
n/
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Recursion Tree/2

n2 n2

.1
2
n/

2

.1
4
n/

2

.1
4
n/

2

. 1
1 6

n/
2

.1
8
n/

2

.1
8
n/

2 2 5
2 5 6

n2

5
1 6

n2

. 5
1 6

/
3

n2

2.n2 /
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Master Method
• The idea is to solve a class of recurrences that have the 

form T(n) = aT(n/b) + f(n)
 

• Assumptions: a : 1 and b > 1, and f(n) is asymptotically 
positive.
  

• Abstractly speaking, T(n) is the runtime for an algorithm 
and we know that
– a subproblem of size n/b are solved recursively, each 

in time T(n/b).
– f(n) is the cost of dividing the problem and combining 

the results. 
    In merge-sort T(n) = 2T(n/2) + 0(n).
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Master Method/2
• Iterating the recurrence (expanding the tree) yields
      T(n) = f(n) + aT(n/b)
              = f(n) + af(n/b) + a2T(n/b2)
              = f(n) + af(n/b) + a2f(n/b2) + … 
                    + ablog n-1f(n/ablog n-1) + ablog nT(1)

      T(n) =

• The first term is a division/recombination cost (totaled 
across all levels of the tree).

• The second term is the cost of doing all subproblems of 
size 1 (total of all work pushed to leaves).

∑
j=0

b log n−1

a j f .n /b j /,0. n
b log a /
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Master Method/3

Note: split into a parts, blog n levels, ablog n = nblog a leaves.

f(n/b)

f(n/b2)f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2)

f(n/b)f(n/b) a f(n/b)

f(n)f(n)

Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

a

a aa

a a a a a a a a a

blog n a2f(n/b2)

0(nblog a)

nblog a

Total: 0(nblog a) + ∑
j=0

logb n−1

a j f .n/b j/
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Master Method, Intuition
• Three common cases:

– Running time dominated by cost at leaves.
– Running time evenly distributed throughout the tree.
– Running time dominated by cost at the root.

• To solve the recurrence, we need to identify the 
dominant term.

• In each case compare f(n) with O(nblog a).
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Master Method, Case 1

f(n) = O(nblog a-ε) for some constant ε>0
– f(n) grows polynomially slower than nblog a  

(by factor nε).
The work at the leaf level dominates

                        Cost of all the leaves

T(n) = 0(nblog a)
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Master Method, Case 2

f(n) = 0(nblog a)
– f(n) and nblog a are asymptotically the same

The work is distributed equally throughout the tree

                    (level cost)  ; (number of levels) 

T(n) = 0(nblog alog n)
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Master Method, Case 3

• f(n) = 1(nblog a+ε) for some constant ε>0
– Inverse of Case 1
– f(n) grows polynomially faster than nblog a   
– Also need a “regularity” condition 

     
        The work at the root dominates

                     division/recombination cost

T(n) = 0(f(n))

0 01 and 0 such that ( / ) ( )   c n a f n b c f n n n4 6 8 9 3 8
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Master Theorem Summarized

Given: recurrence of the form
   

T(n) = aT(n/b) + f(n)

1. f(n) = O(nblog a-ε) 
=> T(n) = 0(nblog a)

2. f(n) = 0(nblog a)
=> T(n) = 0(nblog a log n)

3. f(n) = 1(nblog a+ε) and 
   a f(n/b) 9 α f(n) for some α < 1, n>n

0
=> T(n) = 0(f(n))
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Strategy

1. Extract a, b, and f(n) from a given recurrence
2. Determine nblog a 
3. Compare f(n) and nblog a asymptotically 
4. Determine appropriate MT case and apply it

Merge sort: T(n) = 2T(n/2) + Θ(n)
  a=2, b=2, f(n) = Θ(n) 
  n2log2 = n 
 Θ(n) = Θ(n) 
  => Case 2: T(n) = Θ(nblog alog n) = Θ(n log n) 
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Examples of Master Method

BinarySearch(A, l, r, q):
   m := (l+r)/2 
   if A[m]=q then return m
   else if A[m]>q then 
        BinarySearch(A, l, m-1, q)
   else BinarySearch(A, m+1, r, q)      

T(n) = T(n/2) + 1  
  a=1, b=2, f(n) = 1 
  n2log1 = 1
  1 = Θ(1) 
  => Case 2: T(n) = Θ(log n)



Master Informatique 																																		70Data Structures and Algorithms

Part	3 Divide	and	Conquer

Examples of Master Method/2

T(n) = 9T(n/3) + n  
  a=9, b=3, f(n) = n 
  n3log9 = n2

  n = Ο(n3log 9 - ε) with ε = 1
  => Case 1: T(n) = Θ(n2) 
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Examples of Master Method/3

T(n) = 3T(n/4) + n log n  
a=3, b=4, f(n) = n log n
n4log3 = n0.792

n log n = Ω(n4log 3 + ε) with ε = 0.208
=> Case 3:

regularity condition: a f(n/b) <= c f(n)
                  a f(n/b) = 3(n/4)log(n/4) <=
                                    (3/4)n log n = c f(n) with c=3/4
 T(n) = Θ(n log n) 
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BinarySearchRec1
Find a number in a sorted array:

– trivial if the array contains one element
– else divide into two equal halves 

and solve each half
– combine the results

INPUT:  A[1..n] – sorted array of integers, q – integer 
OUTPUT: index j s.t. A[j] = q, NIL if 3j(19j9n): A[j]  < q 

BinarySearchRec1(A, l, r, q):
   if l = r then
     if A[l] = q then return l else return NIL
   m := ⌊(l+r)/2⌋ 
   ret := BinarySearchRec1(A, l, m, q)
   if ret = NIL then return BinarySearchRec1(A, m+1, r, q)
   else return ret      
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T(n) of BinarySearchRec1
Example: BinarySearchRec1

Solving the recurrence yields
    T(n) = Θ(n)

T.n/= { 0.1 /
2T.n /2/,0.1 /

if n=1
if n-1 }
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BinarySearchRec2

T(n) = Θ(n) – not better than brute force!
Better way to conquer: 
– Solve only one half!

INPUT:  A[1..n] – sorted array of integers, q – integer 
OUTPUT: j s.t. A[j] = q, NIL if 3j(19j9n): A[j]  < q 

BinarySearchRec2(A, l, r, q):
   if l = r then 
      if A[l] = q then return l
      else return NIL 
   m :=  ⌊(l+r)/2⌋
   if A[m] 9 q then return BinarySearchRec2(A, l, m, q)
   else return BinarySearchRec2(A, m+1, r, q)
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T(n) of BinarySearchRec2

Solving the recurrence yields
                       T(n) = Θ(log n)

T.n/= { 0.1 /
T.n/2/,0.1 /

if n=1
if n-1 }
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Example: Finding Min and Max
Given an unsorted array, find a minimum and a 
maximum element in the array

INPUT: A[l..r] – an unsorted array of integers, l9r. 
OUTPUT: (min,max) s.t. 3j(l9j9r): A[j]:min and A[j]9max
 
MinMax(A, l, r):
   if l = r then return (A[l], A[r]) // Trivial case
   m := ⌊(l+r)/2⌋                     // Divide 
   (minl,maxl) := MinMax(A, l, m)    // Conquer     
   (minr,maxr) := MinMax(A, m+1, r)  // Conquer
   if minl < minr then min = minl else min = minr // Combine
   if maxl > maxr then max = maxl else max = maxr // Combine
   return (min,max) 



Master Informatique 																																		77Data Structures and Algorithms

Part	3 Divide	and	Conquer

Summary
• The Divide and Conquer principle
• Merge sort
• Tiling
• Computing powers
• Karatsuba multiplication
• Recurrences

– repeated substitutions
– substitution
– Master method

• Example recurrences: Binary search



Master Informatique 																																		78Data Structures and Algorithms

Part	3 Divide	and	Conquer

Next Chapter
• Sorting

– HeapSort
– QuickSort


