
Master Informatique 																																		1Data Structures and Algorithms

Part	3 Divide	and	Conquer

Data Structures and Algorithms

Chapter 3

Werner Nutt

Master Informatique 																																		2Data Structures and Algorithms

Part	3 Divide	and	Conquer

Acknowledgments
• The course follows the book “Introduction to Algorithms‘”,

by Cormen, Leiserson, Rivest and Stein, MIT Press
[CLRST]. Many examples displayed in these slides are
taken from their book.

• These slides are based on those developed by
Michael Böhlen for this course.

(See http://www.inf.unibz.it/dis/teaching/DSA/)

• The slides also include a number of additions made by
Roberto Sebastiani and Kurt Ranalter when they taught
later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)

Master Informatique 																																		3Data Structures and Algorithms

Part	3 Divide	and	Conquer

DSA, Chapter 3: Overview

• Divide and conquer

• Merge sort, repeated substitutions

• Tiling

• Recurrences

Master Informatique 																																		4Data Structures and Algorithms

Part	3 Divide	and	Conquer

Divide and Conquer
Principle:
If the problem size is small enough to solve it trivially,
solve it.
Else:
● Divide: Decompose the problem

 into one or more disjoint subproblems.
● Conquer: Use divide and conquer recursively

 to solve the subproblems.
● Combine: Take the solutions to the subproblems

 and combine the solutions
 into a solution for the original problem.

Master Informatique 																																		5Data Structures and Algorithms

Part	3 Divide	and	Conquer

Picking a Decomposition

• Finding a decomposition requires some practice
and is the key part.

• The decomposition has the following properties:
– It reduces the problem to a “smaller problem”.
– Often the smaller problem is of the same kind as

the original problem.
– A sequence of decompositions

eventually yields the base case.
– The decomposition must contribute

to solving the original problem.

Master Informatique 																																		6Data Structures and Algorithms

Part	3 Divide	and	Conquer

Merge Sort
Sort an array by
– Dividing it into two arrays.
– Sorting each of the arrays.
– Merging the two arrays.

 17 24 31 45 50 63 85 96

 24 45 63 85

 85 24 63 45 17 31 96 50

 85 24 63 45

 17 31 50 96 17 31 96 50

Master Informatique 																																		7Data Structures and Algorithms

Part	3 Divide	and	Conquer

Merge Sort Algorithm

Divide: If segment S has at least two elements,
divide S into segments S1 and S2:
S1 contains the first ⎡n/2⎤ elements and
S2 contains the remaining ⎣n/2⎦ elements

Conquer: Sort segments S1 and S2
using merge sort

Combine: Merge the sorted segments S1 and S2,
into one sorted auxiliary array,
and copy the auxiliary array back into segment S

Master Informatique 																																		8Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/1

85 24 63 45 17 31 96 50

Master Informatique 																																		9Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/2

 17 31 96 50

85 24 63 45

Master Informatique 																																		10Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/3

 17 31 96 50

 63 45

85 24

Master Informatique 																																		11Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/4

 17 31 96 50

 63 45

 24

85

Master Informatique 																																		12Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/5

 17 31 96 50

 63 45

85 2485

Master Informatique 																																		13Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/6

 17 31 96 50

 63 45

85

24

85

Master Informatique 																																		14Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/7

 17 31 96 50

 63 45

85 2485 24

Master Informatique 																																		15Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/8

 17 31 96 50

 63 45

24 85

Master Informatique 																																		16Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/9

 17 31 96 50

24 85 63 4524 85

Master Informatique 																																		17Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/10

 17 31 96 50

24 85

63 45

24 85

Master Informatique 																																		18Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/11

 17 31 96 50

24 85

 45

63

24 85

Master Informatique 																																		19Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/12

 17 31 96 50

24 85

 45

24 85

63

Master Informatique 																																		20Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/13

 17 31 96 50

24 85

45

24 85

63

Master Informatique 																																		21Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/14

 17 31 96 50

24 85

24 85

63 45

Master Informatique 																																		22Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/15

 17 31 96 50

24 85

45 63

24 85

Master Informatique 																																		23Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/16

 17 31 96 50

24 85 24 85 45 63

Master Informatique 																																		24Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/17

 17 31 96 50

24 45 63 85

Master Informatique 																																		25Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/18

 17 31 96 5024 45 63 85

Master Informatique 																																		26Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/19

17 31 96 50

24 45 63 85

Master Informatique 																																		27Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/19

17 31 96 50

24 45 63 85

Master Informatique 																																		28Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/20

17 31 50 96

24 45 63 85

Master Informatique 																																		29Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/21

 24 45 63 85 17 31 50 96

Master Informatique 																																		30Data Structures and Algorithms

Part	3 Divide	and	Conquer

MergeSort Example/22

17 24 31 45 50 63 85 96

Master Informatique 																																		31Data Structures and Algorithms

Part	3 Divide	and	Conquer

Merge Sort: Algorithm

MergeSort(A,l,r)
 if l < r then
 m := ⎡(l+r)/2⎤
 MergeSort(A,l,m)
 MergeSort(A,m+1,r)
 Merge(A,l,m,r)

Merge(A,l,m,r)
Take the smallest of the two first elements
of the segments A[l..m] and A[m+1..r]
and put it into an auxiliary array.
Repeat this, until both segments are empty.
Copy the auxiliary array into A[l..r].

Master Informatique 																																		32Data Structures and Algorithms

Part	3 Divide	and	Conquer

Merge Sort Summarized

• To sort n numbers
– if n=1 done.
– recursively sort 2 lists of
⎡n/2 ⎤ and ⎣n/2 ⎦ elements,
elements, respectively.

– merge 2 sorted lists of
lengths n/2 in time Θ(n).

• Strategy
– break problem into similar

(smaller) subproblems
– recursively solve

subproblems
– combine solutions to

answer

 1 5 2 4 6 3 2 6

1 5 2 4 6 3 2 6

 1 5 2 4 6 3 2 6

1 5 2 4 6 3 2 6

1 5 2 4 3 6 2 6

 1 2 2 3 4 5 6 6

 1 2 4 5 2 3 6 6

Master Informatique 																																		33Data Structures and Algorithms

Part	3 Divide	and	Conquer

Running Time of Merge Sort
The running time of a recursive procedure
can be expressed as a recurrence:

T.n/={ 0.1/
2T.n/2/,0.n/

if n=1
if n-1}

T .n/={ solvingtrivial problem
NumPieces∗T .n /ReductionFactor /,divide,combine

if n=1
if n-1 }

Master Informatique 																																		34Data Structures and Algorithms

Part	3 Divide	and	Conquer

Repeated Substitution Method

The running time of Merge Sort (assume n=2k).

T(n) = 2T(n/2) + n substitute
 = 2(2T(n/4) + n/2) + n expand
 = 22T(n/4) + 2n substitute
 = 22(2T(n/8) + n/4) + 2n expand
 = 23T(n/8) + 3n observe pattern
T(n) = 2kT(n/2k) + k n
 = 2log nT(n/n) + n log n
 = n + n log n

T .n/={ 0.1/
2T.n /2/,0.n/

if n=1
if n-1}

Master Informatique 																																		35Data Structures and Algorithms

Part	3 Divide	and	Conquer

Tiling

A tromino tile:

A 2kx2k board with a
hole:

A tiling of the board
with trominos:

Master Informatique 																																		36Data Structures and Algorithms

Part	3 Divide	and	Conquer

Tiling: Trivial Case (k = 1)

Trivial case (k = 1): tiling a 2x2 board with a hole:

Idea: reduce the size of the original problem,
so that we eventually get to the 2x2 boards,
which we know how to solve.

Master Informatique 																																		37Data Structures and Algorithms

Part	3 Divide	and	Conquer

Tiling: Dividing the Problem/2

Idea: insert one tromino at the center to “cover” three
holes in each of the three smaller boards

• Now we have four boards
with holes of the size
2k-1x2k-1.

• Keep doing this division, until
we get the 2x2 boards with
holes – we know how to tile
those.

Master Informatique 																																		38Data Structures and Algorithms

Part	3 Divide	and	Conquer

Tiling: Algorithm

INPUT: k – log of the board size (2kx2k board),
 L – location of the hole.
OUTPUT: tiling of the board

Tile(k, L)
 if k = 1 then //Trivial case
 Tile with one tromino
 return
 Divide the board into four equal-sized boards
 Place one tromino at the center to cover 3 additional

 holes
 Let L1, L2, L3, L4 be the positions of the 4 holes
 Tile(k-1, L1)
 Tile(k-1, L2)
 Tile(k-1, L3)
 Tile(k-1, L4)

Master Informatique 																																		39Data Structures and Algorithms

Part	3 Divide	and	Conquer

Tiling: Divide and Conquer
Tiling is a divide-and-conquer algorithm:

The problem is trivial if the board is 2x2, else:

Divide the board into four smaller boards
(introduce holes at the corners of the
 three smaller boards
 to make them look like original problems).

Conquer using the same algorithm recursively

Combine by placing a single tromino
in the center to cover the three new holes.

Master Informatique 																																		40Data Structures and Algorithms

Part	3 Divide	and	Conquer

Karatsuba Multiplication
Multiplying two n-digit (or n-bit) numbers costs n2 digit
multiplications, using a straightforward procedure.

Observation:
23*14 = (2×101 +3)*(1×101 +4) =
= (2*1)102+ (3*1 + 2*4)101 + (3*4)

To save one multiplication we use a trick:
(3*1 + 2*4) = (2+3)*(1+4) - (2*1) - (3*4)

 Original by S. Saltenis, Aalborg

Master Informatique 																																		41Data Structures and Algorithms

Part	3 Divide	and	Conquer

Karatsuba Multiplication/2
To multiply a and b, which are n-digit numbers, we use a
divide and conquer algorithm. We split them in half:

a = a1 ×10n/2+ a0 and b = b1 ×10n/2+ b0

Then:

a *b = (a1 *b1)10n+ (a1 *b0 + a0 *b1)10n/2 + (a0 *b0)

Use a trick to save a multiplication:

(a1 *b0 + a0 *b1) = (a1 +a0)*(b1 +b0) - (a1 *b1) - (a0 *b0)

Master Informatique 																																		42Data Structures and Algorithms

Part	3 Divide	and	Conquer

Karatsuba Multiplication in Java

public static BigInteger karatsuba(BigInteger x, BigInteger y) {
//
// Copyright © 2000-2011, Robert Sedgewick and Kevin Wayne.
//

// length of number
int N = Math.max(x.bitLength(), y.bitLength());

// number of bits divided by 2, rounded up
N = (N / 2) + (N % 2);

Master Informatique 																																		43Data Structures and Algorithms

Part	3 Divide	and	Conquer

// x = a1 2^N + a0, y = b1 2^N + b0
BigInteger a1 = x.shiftRight(N);
BigInteger a0 = x.subtract(a1.shiftLeft(N));
BigInteger b1 = y.shiftRight(N);
BigInteger b0 = y.subtract(b1.shiftLeft(N));

// compute sub-expressions
BigInteger a0b0 = karatsuba(a0, b0);
BigInteger a1b1 = karatsuba(a1, b1);
BigInteger a0PLUSa1MULTb0PLUSb1 = karatsuba(a0.add(a1), b0.add(b1));

Return a0b0.add(a0PLUSa1MULTb0PLUSb1
 .subtract(a0b0).subtract(a1b1)
 .shiftLeft(N))
 .add(a1b1.shiftLeft(2 * N));
}

Karatsuba Multiplication in Java/2

Master Informatique 																																		44Data Structures and Algorithms

Part	3 Divide	and	Conquer

Karatsuba Multiplication/3
The number of single-digit multiplications performed
by the algorithm can be described by a recurrence:

Master Informatique 																																		45Data Structures and Algorithms

Part	3 Divide	and	Conquer

Recurrences
• Running times of algorithms with recursive calls can be

described using recurrences.
• A recurrence is an equation or inequality

that describes a function
in terms of its value on smaller inputs.

• For divide and conquer algorithms:

• Example: Merge Sort

T .n/={ solving trivial problem
NumPieces∗T .n /SubProbFactor/,divide,combine

if n=1
if n-1 }

T .n/={ 0.1 /
2T.n /2/,0.n /

if n=1
if n-1 }

Master Informatique 																																		46Data Structures and Algorithms

Part	3 Divide	and	Conquer

Solving Recurrences

• Repeated (backward) substitution method
– Expanding the recurrence by substitution and noticing

a pattern (this is not a strictly formal proof).
• Substitution method

– guessing the solutions
– verifying the solution by mathematical induction

• Recursion trees
• Master method

– templates for different classes of recurrences

Master Informatique 																																		47Data Structures and Algorithms

Part	3 Divide	and	Conquer

Repeated Substitution (Example)
Let’s find the running time of merge sort
(assume n=2b).

1 if 1
()

2 (/ 2) if 1
n

T n
T n n n

7⎧
7⎨ 5 8⎩

T(n) = 2T(n/2) + n substitute
= 2(2T(n/4) + n/2) + n expand
= 22T(n/4) + 2n substitute
= 22(2T(n/8) + n/4) + 2n expand
= 23T(n/8) + 3n observe pattern

Master Informatique 																																		48Data Structures and Algorithms

Part	3 Divide	and	Conquer

Repeated Substitution (Example)/2

From T(n) = 23T(n/8) + 3n
we get T(n) = 2kT(n/2k) + kn

An upper bound for k is log n:

 T(n) = 2log nT(n/n) + n log n
 T(n) = n + n log n

Master Informatique 																																		49Data Structures and Algorithms

Part	3 Divide	and	Conquer

Repeated Substitution (Example)/2

From T(n) = 23T(n/8) + 3n
we get T(n) = 2kT(n/2k) + kn

If n = 2k, then k = log n:

 T(n) = 2log nT(n/n) + n log n
 T(n) = n + n log n

Master Informatique 																																		50Data Structures and Algorithms

Part	3 Divide	and	Conquer

Repeated Substitution Method
The procedure is straightforward:
– Substitute, Expand, Substitute, Expand, …
– Observe a pattern and determine the expression after

the i-th substitution.
– Find out what the highest value of i (number of

iterations, e.g., log n) should be to get to the base
case of the recurrence (e.g., T(1)).

– Insert the value of T(1) and the expression of i into
your expression.

Master Informatique 																																		51Data Structures and Algorithms

Part	3 Divide	and	Conquer

Analysis of Sort Merge
• Let’s find a more exact running time of merge sort

(assume n=2b).

2 if 1
()

2 (/ 2) 2 3 if 1
n

T n
T n n n

7⎧
7⎨ 5 5 8⎩

T(n) = 2T(n/2) + 2n + 3 substitute
 = 2(2T(n/4) + n + 3) + 2n +3 expand
 = 22T(n/4) + 4n + 2*3 + 3 substitute
 = 22(2T(n/8) + n/2 + 3) + 4n + 2*3 + 3 expand
 = 23T(n/23) + 2*3n + (22+21+20)*3 observe pattern

Master Informatique 																																		52Data Structures and Algorithms

Part	3 Divide	and	Conquer

Analysis of Sort Merge/2

T(n) = 2iT(n/2i) + 2in + 3

An upper bound for i is log n

= 2log nT(n/2log n) + 2 n log n + 3*(2log n - 1)
= 5n + 2 n i n – 3

 = Θ(n log n)

Master Informatique 																																		53Data Structures and Algorithms

Part	3 Divide	and	Conquer

Substitution Method
The substitution method to solve recurrences entails two
steps:
– Guess the solution.
– Use induction to prove the solution.

Example:
– T(n) = 4T(n/2) + n

Master Informatique 																																		54Data Structures and Algorithms

Part	3 Divide	and	Conquer

Substitution Method/2

1) Guess T(n) = O(n3), i.e., T(n) is of the form cn3

2) Prove T(n) 9 cn3 by induction

T(n) = 4T(n/2) + n recurrence
 9 4c(n/2)3 + n induction hypothesis
= 0.5cn3 + n simplify
= cn3 – (0.5cn3 – n) rearrange
 9 cn3 if c>=2 and n>=1

Thus T(n) = O(n3)

Master Informatique 																																		55Data Structures and Algorithms

Part	3 Divide	and	Conquer

Substitution Method/3

Tighter bound for T(n) = 4T(n/2) + n:

Try to show T(n) = O(n2)

Prove T(n) 9 cn2 by induction

T(n) = 4T(n/2) + n
 9 4c(n/2)2 + n
 = cn2 + n
 NOT 9 cn2

 => contradiction

Master Informatique 																																		56Data Structures and Algorithms

Part	3 Divide	and	Conquer

Substitution Method/4

• What is the problem? Rewriting
 T(n) = O(n2) = cn2 + (something positive)
as T(n) 9 cn2

does not work with the inductive proof.
• Solution: Strengthen the hypothesis for the inductive

proof:
– T(n) 9 (answer you want) - (something > 0)

Master Informatique 																																		57Data Structures and Algorithms

Part	3 Divide	and	Conquer

Substitution Method/5

Fixed proof: strengthen the inductive
hypothesis by subtracting lower-order terms:

Prove T(n) 9 cn2 - dn by induction

T(n) = 4T(n/2) + n
 9 4(c(n/2)2 – d(n/2)) + n
 = cn2 – 2dn + n
 = cn2 – dn – (dn – n)
 9 cn2 – dn if d 1:

Master Informatique 																																		58Data Structures and Algorithms

Part	3 Divide	and	Conquer

Recursion Tree
A recursion tree is a convenient way to visualize what
happens when a recurrence is iterated.
– Good for ”guessing” asymptotic solutions to

recurrences

.1
4
n/

2

T. 1
2
n/T .1

4
n/

n2

.1
2
n/

2n2

T. 1
1 6

n/ T .1
8
n/ T. 1

8
n/ T. 1

4
n/

Master Informatique 																																		59Data Structures and Algorithms

Part	3 Divide	and	Conquer

Recursion Tree/2

n2 n2

.1
2
n/

2

.1
4
n/

2

.1
4
n/

2

. 1
1 6

n/
2

.1
8
n/

2

.1
8
n/

2 2 5
2 5 6

n2

5
1 6

n2

. 5
1 6

/
3

n2

2.n2 /

Master Informatique 																																		60Data Structures and Algorithms

Part	3 Divide	and	Conquer

Master Method
• The idea is to solve a class of recurrences that have the

form T(n) = aT(n/b) + f(n)

• Assumptions: a : 1 and b > 1, and f(n) is asymptotically
positive.

• Abstractly speaking, T(n) is the runtime for an algorithm
and we know that
– a subproblem of size n/b are solved recursively, each

in time T(n/b).
– f(n) is the cost of dividing the problem and combining

the results.
 In merge-sort T(n) = 2T(n/2) + 0(n).

Master Informatique 																																		61Data Structures and Algorithms

Part	3 Divide	and	Conquer

Master Method/2
• Iterating the recurrence (expanding the tree) yields
 T(n) = f(n) + aT(n/b)
 = f(n) + af(n/b) + a2T(n/b2)
 = f(n) + af(n/b) + a2f(n/b2) + …
 + ablog n-1f(n/ablog n-1) + ablog nT(1)

 T(n) =

• The first term is a division/recombination cost (totaled
across all levels of the tree).

• The second term is the cost of doing all subproblems of
size 1 (total of all work pushed to leaves).

∑
j=0

b log n−1

a j f .n /b j /,0. n
b log a /

Master Informatique 																																		62Data Structures and Algorithms

Part	3 Divide	and	Conquer

Master Method/3

Note: split into a parts, blog n levels, ablog n = nblog a leaves.

f(n/b)

f(n/b2)f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2)

f(n/b)f(n/b) a f(n/b)

f(n)f(n)

Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

a

a aa

a a a a a a a a a

blog n a2f(n/b2)

0(nblog a)

nblog a

Total: 0(nblog a) + ∑
j=0

logb n−1

a j f .n/b j/

Master Informatique 																																		63Data Structures and Algorithms

Part	3 Divide	and	Conquer

Master Method, Intuition
• Three common cases:

– Running time dominated by cost at leaves.
– Running time evenly distributed throughout the tree.
– Running time dominated by cost at the root.

• To solve the recurrence, we need to identify the
dominant term.

• In each case compare f(n) with O(nblog a).

Master Informatique 																																		64Data Structures and Algorithms

Part	3 Divide	and	Conquer

Master Method, Case 1

f(n) = O(nblog a-ε) for some constant ε>0
– f(n) grows polynomially slower than nblog a

(by factor nε).
The work at the leaf level dominates

 Cost of all the leaves

T(n) = 0(nblog a)

Master Informatique 																																		65Data Structures and Algorithms

Part	3 Divide	and	Conquer

Master Method, Case 2

f(n) = 0(nblog a)
– f(n) and nblog a are asymptotically the same

The work is distributed equally throughout the tree

 (level cost) ; (number of levels)

T(n) = 0(nblog alog n)

Master Informatique 																																		66Data Structures and Algorithms

Part	3 Divide	and	Conquer

Master Method, Case 3

• f(n) = 1(nblog a+ε) for some constant ε>0
– Inverse of Case 1
– f(n) grows polynomially faster than nblog a
– Also need a “regularity” condition

 The work at the root dominates

 division/recombination cost

T(n) = 0(f(n))

0 01 and 0 such that (/) () c n a f n b c f n n n4 6 8 9 3 8

Master Informatique 																																		67Data Structures and Algorithms

Part	3 Divide	and	Conquer

Master Theorem Summarized

Given: recurrence of the form

T(n) = aT(n/b) + f(n)

1. f(n) = O(nblog a-ε)
=> T(n) = 0(nblog a)

2. f(n) = 0(nblog a)
=> T(n) = 0(nblog a log n)

3. f(n) = 1(nblog a+ε) and
 a f(n/b) 9 α f(n) for some α < 1, n>n

0
=> T(n) = 0(f(n))

Master Informatique 																																		68Data Structures and Algorithms

Part	3 Divide	and	Conquer

Strategy

1. Extract a, b, and f(n) from a given recurrence
2. Determine nblog a
3. Compare f(n) and nblog a asymptotically
4. Determine appropriate MT case and apply it

Merge sort: T(n) = 2T(n/2) + Θ(n)
 a=2, b=2, f(n) = Θ(n)
 n2log2 = n
 Θ(n) = Θ(n)
 => Case 2: T(n) = Θ(nblog alog n) = Θ(n log n)

Master Informatique 																																		69Data Structures and Algorithms

Part	3 Divide	and	Conquer

Examples of Master Method

BinarySearch(A, l, r, q):
 m := (l+r)/2
 if A[m]=q then return m
 else if A[m]>q then
 BinarySearch(A, l, m-1, q)
 else BinarySearch(A, m+1, r, q)

T(n) = T(n/2) + 1
 a=1, b=2, f(n) = 1
 n2log1 = 1
 1 = Θ(1)
 => Case 2: T(n) = Θ(log n)

Master Informatique 																																		70Data Structures and Algorithms

Part	3 Divide	and	Conquer

Examples of Master Method/2

T(n) = 9T(n/3) + n
 a=9, b=3, f(n) = n
 n3log9 = n2

 n = Ο(n3log 9 - ε) with ε = 1
 => Case 1: T(n) = Θ(n2)

Master Informatique 																																		71Data Structures and Algorithms

Part	3 Divide	and	Conquer

Examples of Master Method/3

T(n) = 3T(n/4) + n log n
a=3, b=4, f(n) = n log n
n4log3 = n0.792

n log n = Ω(n4log 3 + ε) with ε = 0.208
=> Case 3:

regularity condition: a f(n/b) <= c f(n)
 a f(n/b) = 3(n/4)log(n/4) <=
 (3/4)n log n = c f(n) with c=3/4
 T(n) = Θ(n log n)

Master Informatique 																																		72Data Structures and Algorithms

Part	3 Divide	and	Conquer

BinarySearchRec1
Find a number in a sorted array:

– trivial if the array contains one element
– else divide into two equal halves

and solve each half
– combine the results

INPUT: A[1..n] – sorted array of integers, q – integer
OUTPUT: index j s.t. A[j] = q, NIL if 3j(19j9n): A[j] < q

BinarySearchRec1(A, l, r, q):
 if l = r then
 if A[l] = q then return l else return NIL
 m := ⌊(l+r)/2⌋
 ret := BinarySearchRec1(A, l, m, q)
 if ret = NIL then return BinarySearchRec1(A, m+1, r, q)
 else return ret

Master Informatique 																																		73Data Structures and Algorithms

Part	3 Divide	and	Conquer

T(n) of BinarySearchRec1
Example: BinarySearchRec1

Solving the recurrence yields
 T(n) = Θ(n)

T.n/= { 0.1 /
2T.n /2/,0.1 /

if n=1
if n-1 }

Master Informatique 																																		74Data Structures and Algorithms

Part	3 Divide	and	Conquer

BinarySearchRec2

T(n) = Θ(n) – not better than brute force!
Better way to conquer:
– Solve only one half!

INPUT: A[1..n] – sorted array of integers, q – integer
OUTPUT: j s.t. A[j] = q, NIL if 3j(19j9n): A[j] < q

BinarySearchRec2(A, l, r, q):
 if l = r then
 if A[l] = q then return l
 else return NIL
 m := ⌊(l+r)/2⌋
 if A[m] 9 q then return BinarySearchRec2(A, l, m, q)
 else return BinarySearchRec2(A, m+1, r, q)

Master Informatique 																																		75Data Structures and Algorithms

Part	3 Divide	and	Conquer

T(n) of BinarySearchRec2

Solving the recurrence yields
 T(n) = Θ(log n)

T.n/= { 0.1 /
T.n/2/,0.1 /

if n=1
if n-1 }

Master Informatique 																																		76Data Structures and Algorithms

Part	3 Divide	and	Conquer

Example: Finding Min and Max
Given an unsorted array, find a minimum and a
maximum element in the array

INPUT: A[l..r] – an unsorted array of integers, l9r.
OUTPUT: (min,max) s.t. 3j(l9j9r): A[j]:min and A[j]9max

MinMax(A, l, r):
 if l = r then return (A[l], A[r]) // Trivial case
 m := ⌊(l+r)/2⌋ // Divide
 (minl,maxl) := MinMax(A, l, m) // Conquer
 (minr,maxr) := MinMax(A, m+1, r) // Conquer
 if minl < minr then min = minl else min = minr // Combine
 if maxl > maxr then max = maxl else max = maxr // Combine
 return (min,max)

Master Informatique 																																		77Data Structures and Algorithms

Part	3 Divide	and	Conquer

Summary
• The Divide and Conquer principle
• Merge sort
• Tiling
• Computing powers
• Karatsuba multiplication
• Recurrences

– repeated substitutions
– substitution
– Master method

• Example recurrences: Binary search

Master Informatique 																																		78Data Structures and Algorithms

Part	3 Divide	and	Conquer

Next Chapter
• Sorting

– HeapSort
– QuickSort

