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Acknowledgments
• The course follows the book “Introduction to Algorithms‘”, 

by Cormen, Leiserson, Rivest and Stein, MIT Press 
[CLRST]. Many examples displayed in these slides  are 
taken from their book. 

• These slides are based on those developed by 
Michael Böhlen for this course. 

(See http://www.inf.unibz.it/dis/teaching/DSA/)

• The slides also include a number of additions made by 
Roberto Sebastiani and Kurt Ranalter when they taught 
later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)
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DSA, Chapter 2: Overview
 

• Complexity of algorithms

• Asymptotic analysis

• Correctness of algorithms

• Special case analysis
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Analysis of Algorithms

• Efficiency:

– Running time

– Space used

• Efficiency is defined as a function of the input size:

– Number of data elements (numbers, points)

– The number of bits of an input number
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The RAM Model
We study complexity on a simplified machine model,
the RAM (= Random Access Machine):
– accessing and manipulating data takes a (small) 

constant amount of time
Among the instructions (each taking constant time), 
we usually choose one type of instruction as a 
characteristic operation that is counted:
– arithmetic (add, subtract, multiply, etc.)
– data movement (assign)
– control flow (branch, subroutine call, return)
– comparison

Data types: integers, characters, and floats



Master Informatique 																																		7Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Analysis of Insertion Sort
Running time as a function of the input size 
(exact analysis)

cost times
for j := 2 to n do c1 n
  key := A[j] c2 n-1
  // Insert A[j] into A[1..j-1]
  i := j-1 c3 n-1
  while i>0 and A[i]>key do c4
    A[i+1] := A[i] c5
    i-- c6
  A[i+1]:= key c7

∑ j=2

n
t j

∑ j=2

n
-t j−1.

∑ j=2

n
-t j−1.

n-1

t
j
  is the number of times the while loop is executed, i.e.,

(t
j
 – 1) is number of elements in the initial segment greater than A[j]



Master Informatique 																																		8Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Analysis of Insertion Sort/2
• The running time of an algorithm for a given input

is the sum of the running times of each statement.
• A statement 

– with cost c 
– that is executed n times

contributes c*n to the running time.
• The total running time T(n) of insertion sort is

T(n) = c1*n + c2*(n-1) + c3*(n-1) + c4 * 

+ c5                + c6                 + c7*(n - 1)

∑ j=2

n
t j

∑ j=2

n
-t j−1. ∑ j=2

n
-t j−1.
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Analysis of Insertion Sort/3

• The running time is not necessarily equal 
for every input of size n

• The performance depends on the details of the input 
(not only length n)

• This is modeled by tj

• In the case of Insertion Sort, the time tj 
depends on the original sorting of the input array
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Performance Analysis
• Often it is sufficient to count the number of iterations 

of the core (innermost) part

– no distinction between comparisons, assignments, etc 
(that means, roughly the same cost for all of them)

– gives precise enough results

• In some cases the cost of selected operations dominates 
all other costs.

– disk I/O versus RAM operations

– database systems
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Worst/Average/Best Case
• Analyzing Insertion Sort’s

– Worst case: elements sorted in inverse order, tj=j, 
total running time is quadratic (time = an2+bn+c)

– Average case (= average of all inputs of size n): 
tj=j/2, total running time is quadratic (time = an2+bn+c)

– Best case: elements already sorted, tj=1, 
innermost loop is never executed, 
total running time is linear (time = an+b)

• How can we define these concepts formally? 
… and how much sense does “best case” make?
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Worst/Average/Best Case/2

For a specific size of input size n, investigate running 
times for different input instances:

1n

2n

3n

4n

5n

6n = 4 3 2 1

= 1 2 3 4
}

best case

average case

worst case

input instance
A    B     C     D     E     F     G

ru
n
n
in

g  
ti

m
e

???
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Worst/Average/Best Case/3

For inputs of all sizes:

1n

2n

3n

4n

5n

6n

Input instance size

R
un

ni
ng

 ti
m

e

1    2    3    4    5     6    7    8     9   10   11   12  
…..

best-case

average-case

worst-case
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Best/Worst/Average Case/4
Worst case is most often used:
– It is an upper-bound
– In certain application domains (e.g., air traffic control, 

surgery) knowing the worst-case time complexity is of 
crucial importance

– For some algorithms, worst case occurs fairly often
– The average case is often as bad as the worst case

The average case depends on assumptions
– What are the possible input cases?
– What is the probability of each input?
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Analysis of Linear Search
INPUT: A[1..n] – an  array of integers, 
           q – an integer. 
OUTPUT:  j s . t .  A[j] =q, or -1 i f  /j( 15j5n) :  A[j]7q 
  
j := 1
while j 5 n and A[j] != q do j++
if j 5 n then return j
else return -1 

• Worst case running time: n
• Average case running time: (n+1)/2 (if q is present) 

                               … under which assumption?
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Binary Search: Idea

• Search in a sorted array
• Check the element in the middle of the array
• If we have found the search value, 

we are done
• If not, check whether the search value 

has to be in the left or in the right half of the array
• Depending on the check, 

continue with the left or the right half ...
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Binary Search, Recursive Version
INPUT: A[1..n] – sorted (increasing) array of integers, q – integer. 
OUTPUT: an index j such that A[j] = q. -1, if /j (15j5n): A[j]  7 q 
  

searchRec(A,q)
  searchRecAux(A,q,1,n)

searchRecAux(A,q,l,r)
  m := ⌊(l+r)/2⌋ ;
  if l > r
     then return -1
  else if A(m) = q 
     then return m
  else if q < A(m) 
     then return searchRecAux(A,q,l,m-1)
     else return searchRecAux(A,q,m+1,r)
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Binary Search, Iterative Version
INPUT: A[1..n] – sorted (increasing) array of integers, q – integer. 
OUTPUT: an index j such that A[j] = q. -1, if /j (15j5n): A[j]  7 q 
  

searchIter(A,q)
  l := 1; r := n;
  m := ⌊(l+r)/2⌋;  
  while  l 5 r and A(m) != q do 
    if q < A(m)          
       then r:=m-1

 else l:=m+1
    m := ⌊(l+r)/2⌋;
  if l > r
     then return -1
     else return m
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Analysis of Binary Search
How many times is the loop executed?
– With each execution 

the difference between l and r is cut in half
• Initially the difference is n
• The loop stops when the difference becomes 0 

(less than 1) 
– How many times do you have to cut n in half to get 0?
– log n – better than the brute-force approach of linear 

search (n).
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Linear vs Binary Search
• Costs of linear search: n

• Costs of binary search: log(n)

• Should we care?

• Phone book with n entries:

– n = 200,000,   log n = log 200,000 = 8 +10 

– n = 2M,   log 2M = 1 + 10 + 10

– n = 20M,   log 20M = 5+20
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Asymptotic Analysis
• Goal: simplify the analysis of the running time 

by getting rid of details, which are 
affected by specific implementation and hardware 
– “rounding” of numbers:  1,000,001 8 1,000,000
– “rounding” of functions: 3n2 8 n2

• Capturing the essence: how the running time of an 
algorithm increases with the size of the input in the limit
– Asymptotically more efficient algorithms 

are best for all but small inputs 
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Asymptotic Notation

f -n .
( )c g n:

n0 Input Size

R
un

ni
ng

 T
im

e

The “big-Oh” O-Notation

– talks about
asymptotic upper bounds

– f(n) 2 O(g(n)) iff 
there exist  c > 0 and n0 > 0, 
s.t.   f(n) 5 c g(n)   for n 6 n0

– f(n) and g(n) are functions 
over non-negative integers

Used for worst-case analysis
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Asymptotic Notation, Example
f(n) = 2n2 + 3(n+1),    g(n) = 3n2

Values of f(n) = 2n2 + 3(n+1):

2+6,    8+9, 18+12, 32+15 

Values of g(n) = 3n2:

    3,     12,   27,     64

From n0 = 4 onward, we have f(n)  5 g(n)
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Asymptotic Notation,  Examples
• Simple Rule: We can always drop lower order terms 

and constant factors, without changing big Oh:
– 7n + 3    is
– 8n2 log n + 5n2 + n    is    
– 50 n log n    is    

• Note: 
– 50 n log n   is    O(n2)
– 50 n log n   is    O(n100) 

but this is less informative than saying
– 50 n log n   is    O(n log n) 

O(n)
O(n2 log n)
O(n log n)
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Asymptotic Notation/2
• The “big-Omega” Ω0Notation

– asymptotic lower bound
– f(n) = Ω(g(n)) iff 

there exist  c > 0 and n0 > 0, 
s.t. c g(n) 5 f(n),  for n 6 n0

• Used to describe lower bounds 
of algorithmic problems
– E.g., searching in 

       a sorted array 
with linear search is Ω(n), 
with binary search is Ω(log n)

Input Size

R
un

ni
ng

 T
im

e

f -n .
( )c g n:

n0
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Asymptotic Notation/3
• The “big-Theta” Θ0Notation

– asymptotically tight bound

– f(n) = Θ(g(n)) if there exists 
c1>0, c2>0, and n0>0, 
s.t. for n 6 n0 
c1 g(n) 5 f(n) 5 c2 g(n)

• f(n) = Θ(g(n)) iff 
f(n) = Ο(g(n)) and f(n) = Ω(g(n))

• Note: O(f(n)) is often used 
   when Θ(f(n)) is meant

Input Size

R
un

ni
ng

 T
im

e

f -n .

n0

c
2
⋅g- n.

c
1
⋅g -n .
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Asymptotic Notation/4
• Analogy with real numbers

– f(n) = O(g(n))  4 f  5 g
– f(n) = Ω(g(n))   4 f 6 g
– f(n) = Θ(g(n))   4 f  2 g

• Abuse of notation: 
f(n) = O(g(n)) actually means 

            f(n) 9 O(g(n)) 
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Exercise: Asymptotic Growth
Order the following functions according to their asymptotic growth.
– 2n + n2 

– 3n3 + n2 – 2n3 + 5n – n3

– 20 log2 2n

– 20 log2 n2 

– 20 log2 4n 

– 20 log2 2n 

– 3n 
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Comparison of Running Times
Determining the maximal problem size

25192n

2448831n4

42,4265,4777072n2

7,826,087166,6664,09620n log n

9,000,000150,0002,500400n

1 hour1 minute1 secondRunning Time 
T(n) in µs

31
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Special Case Analysis

• Consider extreme cases and make sure 
your solution works in all cases.

• The problem: identify special cases.

• This is related to INPUT and OUTPUT specifications. 
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Special Cases

• empty data structure 
(array, file, list, …)

• single element data 
structure

• completely filled data 
structure

• entering a function
• termination of a function

• zero, empty string
• negative number
• border of domain

• start of loop
• end of loop
• first iteration of loop
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Sortedness

The following algorithm checks 
whether an array is sorted.

Analyze the algorithm by considering special cases.

INPUT:  A [1..n ]  –  an array of  in tegers .  
OUTPUT:  TRUE i f  A i s  sorted;  FALSE otherwise
 
for i  : =  1 to n
  if A [i]  6 A[i+1]  then return FALSE
return TRUE
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Sortedness/2

• Start of loop, i=1 è OK
• End of loop, i=n è ERROR (tries to access A[n+1])

INPUT:  A [1..n ]  –  an array of  in tegers .  
OUTPUT:  TRUE i f  A i s  sorted;  FALSE otherwise
 
for i  : =  1 to n
  if A [i]  6 A[i+1]  then return FALSE
return TRUE
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Sortedness/3

● Start of loop, i=1  OK!
● End of loop, i=n-1  OK!
● A=[1,2,3]  First iteration, from i=1 to i=2  OK! !
● A=[1,2,2]  ! ERROR (if A[i]=A[i+1] for some i)

INPUT:  A [1..n ]  – an array of  in tegers.  
OUTPUT:  TRUE i f  A i s  sorted;  FALSE otherwise
 
for i  : =  1 to n–1
  if A [i]  6 A[i+1]  then return FALSE
return TRUE
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Sortedness/4

• Start of loop, i=1 è OK
• End of loop, i=n-1 è OK
• A=[1,2,3] è First iteration, from i=1 to i=2 è OK
• A=[1,1,1] è OK
• Empty data structure, n=0 è ? (for loop)
• A=[-1,0,1,-3] è OK

INPUT:  A [1..n ]  – an array of  in tegers.  
OUTPUT:  TRUE i f  A i s  sorted;  FALSE otherwise
 
for i  : =  1 to n -1
  if A [i]  3 A[i+1]  then return FALSE
return TRUE
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Binary Search, Variant 1

Analyze the following algorithm 
by considering special cases.

l := 1; r := n
do
  m := ⌊(l+r)/2⌋
  if A[m] = q then return m
  else if A[m] > q then r := m-1
  else l := m+1 
while l < r
return -1
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Binary Search, Variant 1

• Start of loop è OK
• End of loop, l=r è Error! Example: search 3 in [3 5 7]

l := 1; r := n
do
  m := ⌊(l+r)/2⌋
  if A[m] = q then return m
  else if A[m] > q then r := m-1
  else l := m+1 
while l < r
return -1
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Binary Search, Variant 1

• Start of loop è OK
• End of loop, l=r è OK
• First iteration è OK
• A=[1,1,1] è OK
• Empty array, n=0 è Error! Tries to access A[0]
• One-element array, n=1 è OK 

l := 1; r := n
do
  m := ⌊(l+r)/2⌋
  if A[m] = q then return m
  else if A[m] > q then r := m-1
  else l := m+1 
while l <= r
return -1
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Binary Search, Variant 1

• Start of loop è OK
• End of loop, l=r è OK
• First iteration è OK
• A=[1,1,1] è OK
• Empty data structure, n=0 è OK
• One-element data structure, n=1 è OK 

l := 1; r := n
if r < l then return -1;
do
  m := ⌊(l+r)/2⌋
  if A[m] = q then return m
  else if A[m] > q then r := m-1
  else l := m+1 
while l <= r
return -1



Master Informatique 																																		42Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Binary Search, Variant 2

Analyze the following algorithm 
by considering special cases

l := 1; r := n
while l < r do 
  m := ⌊(l+r)/2⌋
  if A[m] <= q 
    then l := m+1 else r := m 
if A[l-1] = q
  then return l-1 else return -1
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Binary Search, Variant 3

Analyze the following algorithm 
by considering special cases

l := 1; r := n
while l <= r do
  m := ⌊(l+r)/2⌋
  if A[m] <= q 
    then l := m+1 else r := m 
if A[l-1] = q
  then return l-1 else return -1
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Insertion Sort, Slight Variant
• Analyze the following algorithm 

by considering special cases
• Hint: beware of lazy evaluations

INPUT:   A [1..n ]  –  an array of  in tegers
OUTPUT:  permutation of  A s . t .  
        A[1]  5 A[2]   …5   5 A[n]

for j  : =  2 to n do 
  key : =  A [ j] ;  i  : =  j - 1 ;
  while A [i]  >  key and i  >  0 do
    A[i+1]  : =  A [i] ;   i - - ;
  A[i+1]  : = key



Master Informatique 																																		45Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Merge
Analyze the following algorithm 
by considering special cases.

INPUT:  A [1..n 1 ],  B [1..n2]  sor ted arrays of    
       in tegers,  C[1..n1+n2]  array
   
OUTPUT:  permutation C of  A .B s . t .  
  C[1]   5 C[2]  5. . .  5 C[n1+n2]

i := 1 ;  j := 1 ;
for k: =1 to n1 + n2 do 

if A [i]  <= B [ j]
then C[k]  : =  A [i] ;  i+ + ;
else C[k]  : =  B [ j] ;  j+ + ;

return C;
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Merge/2

INPUT:  A [1..n 1 ],  B [1..n2]  sor ted arrays of  
in tegers,  C[1..n1+n2]  array
OUTPUT:  permutation C of  A .B s . t .  
  C[1]   5 C[2]  5. . .  5 C[n1+n2]

i := 1 ; j : = 1 ;
for k: = 1 to n1 + n2 do 
   if j  >  n2 or (i  <= n1 and A [i]< = B [j])

then C[k]  : =  A [i] ;  i+ + ;
else C[k]  : =  B [ j] ;  j+ + ;

return C;
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Merge/3
To analyze the algorithm on the previous slide,
we distinguish 4 cases
– neither A nor B exhausted implies

“A[i] ≤ B[j]” decides
– B exhausted, A not, implies

j > n2,  implies A wins
– B not exhausted, A exhausted, implies

j ≤ n2 && i > n, implies B wins
– A, B both exhausted, implies

k > n1+n2, implies algorithm stops
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DSA, Part 2: Overview
 

• Complexity of algorithms

• Asymptotic analysis

• Special case analysis

• Correctness of algorithms
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Correctness of Algorithms
• An algorithm is correct if for every legal input, 

it terminates and produces the desired output.

• Automatic proof of correctness is not possible
(this is one of the so-called “undecidable problems”)

• There are practical techniques and rigorous formalisms 
that help one to reason about the correctness of 
(parts of) algorithms.
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Partial and Total Correctness

every legal input Algorithm output

IF this point is reached, THEN this is the output  

n Total correctness

every legal input Algorithm output

INDEED this point is reached, AND this is the output  

n Partial correctness
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Assertions
• To prove partial correctness we associate a number of 

assertions (statements about the state of the execution) 
with specific checkpoints in the algorithm.

– E.g., “A[1], …, A[j] form an increasing sequence”

• Preconditions – assertions that must be valid before the 
execution of an algorithm or a subroutine (INPUT)

• Postconditions – assertions that must be valid after the 
execution of an algorithm or a subroutine (OUTPUT)



Master Informatique 																																		52Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Pre- and Postconditions of 
Linear Search
INPUT:  A [1..n ]  –  a array of  in tegers,  
           q – an in te ge r.  
OUTPUT:  j s . t .  A[j] =q. -1 i f  /i( 15i5n) :  A[i]7q 
  
j := 1
while j 5 n and A[j] != q do j++
if j 5 n then return j
  else return -1 

How can we be sure that 
– whenever the precondition holds,
– also the postcondition holds?
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Loop Invariant  in Linear Search

Whenever the beginning of the loop is reached, then

 A[i] != q    for all  i where 1  5 i   1 j

When the loop stops, there are two cases
–  j = n+1, which implies  A[i] != q    for all  i,  1  5 i   1 n+1
– A[j] = q

j := 1
while j 5 n and A[j] != q do j++
if j 5 n then return j
  else return -1 
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Loop Invariant  in Linear Search

Note: The condition

A[i] != q    for all  i where 1  5 i   1 j

– holds when the loop is entered for the first time
– continues to hold until we reach the loop 

for the last time

j := 1
while j 5 n and A[j] != q do j++
if j 5 n then return j
else return -1 
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Loop Invariants
• Invariants: assertions that are valid every time the 

beginning of the loop is reached 
(many times during the execution of an algorithm)

• We must show three things about loop invariants:
– Initialization: it is true prior to the first iteration.
– Maintenance: if  it is true before an iteration, 

then it is true after the iteration.
– Termination: when a loop terminates,

the invariant gives a useful property to show the 
correctness of the algorithm
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Example: Binary Search/1
• We want to show that 

q is not in A  
     if -1 is returned.

• Invariant: 
/i9[1..l-1]: A[i]<q   (ia) 
/i9[r+1..n]: A[i]>q (ib)

• Initialization: l = 1, r = n 
the invariant holds because
there are no elements to the left of l or to the right of r.
l = 1 yields  / i  9 [1..0]: A[i]<q 

 this holds because [1..0] is empty
r = n yields  / i  9 [n+1..n]: A[i]>q 

 this holds because [n+1..n] is empty

 l:= 1; r:= n;
 m:= ⌊(l+r)/2⌋;  
 while l <= r and A(m) != q do 
   if q < A(m)          
      then r:=m-1
      else l:=m+1
    m:=⌊(l+r)/2⌋;
 if l > r
    then return -1
    else return m
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Example: Binary Search/2
• Invariant: 

/i9[1..l-1]: A[i]<q   (ia) 
/i9[r+1..n]: A[i]>q (ib)

• Maintenance: 1 ≤ l, r ≤ n, m = ⌊(l+r)/2⌋
   :We consider two cases

– A[m] != q & q < A[m]:  implies  r = m-1
A sorted   implies   /k9[r+1..n]: A[k] > q      (ib)

– A[m] != q & A[m] < q:  implies  l = m+1
A sorted   implies  /k9[1..l-1]: A[k] < q      (ia)

 l:= 1; r:= n;
 m:= ⌊(l+r)/2⌋;  
 while l <= r and A(m) != q do 
   if q < A(m)          
      then r:=m-1
      else l:=m+1
    m := ⌊(l+r)/2⌋;
 if l > r
    then return -1
    else return m
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Example: Binary Search/3
• Invariant: 

/i9[1..l-1]: A[i]<q   (ia)
/i9[r+1..n]: A[i]>q (ib)

• Termination: 1 ≤ l, r ≤ n, l ≤ r
Two cases:

l := m+1    implies   lnew = ⌊(l+r)/2⌋+ 1  >  lold
r := m-1     implies   rnew = ⌊(l+r)/2⌋ - 1 <  rold

• The range gets smaller during each iteration and 
the loop will terminate when  l ≤ r  no longer holds

 l:= 1; r:= n;
 m:= ⌊(l+r)/2⌋;  
 while l <= r and A(m) != q do 
   if q < A(m)          
      then r:=m-1

else l:=m+1
    m := ⌊(l+r)/2⌋;
 if l > r
    then return -1
    else return m
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Example: Insertion Sort/1

Loop invariants:
External “for” loop
Let Aorig denote the array at 
the beginning of the for loop:
A[1..j-1] is sorted
A[1..j-1] 9 Aorig[1..j-1] 

Internal “while” loop
Let Aorig denote the array at beginning of the while loop:

• A[1..i]  =  Aorig[1..i] 
• A[i+2..j]  =  Aorig[i+1..j-1] 
• A[k] > key    for all k in {i+2,...,j}  

for j := 2 to n do
  key := A[j]
  i := j-1
  while i>0 and A[i]>key do
    A[i+1] := A[i]
    i--
  A[i+1] := key
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Example: Insertion Sort/2
External for loop:
 (i)  A[1...j-1] is sorted
(ii)  A[1...j-1]  9 Aorig[1..j-1] 
Internal while loop:
– A[1..i] = Aorig[1..i]
– A[i+2..j] = Aorig[i+1..j-1]
– A[k] > key   for all k in {i+2,...,j} 

Initialization: 
External loop: (i), (ii)  j = 2: A[1..1] 9 Aorig[1..1]  and is trivially sorted 
Internal loop: i = j-1: 
– A[1...j-1] = Aorig[1..j-1] , since nothing has happend
– A[j+1..j] = Aorig[j..j-1] , since both sides are empty
– A[k] > key   holds trivially for all k in the empty set

for j := 2 to n do
  key := A[j]
  i := j-1
  while i>0 and A[i]>key do
    A[i+1] := A[i]
    i--
  A[i+1] := key
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Example: Insertion Sort/3
External for loop:
 (i)  A[1..j-1] is sorted
(ii)  A[1..j-1]  9 Aorig[1..j-1] 
Internal while loop:
– A[1..i] = Aorig[1..i]
– A[i+2..j] = Aorig[i+1..j-1]
– A[k] > key   for all k in {i+2,...,j} 

     Maintenance internal while loop
Before the decrement  “i--”, the following facts hold:
– A[1..i-1]  = Aorig[1..i-1]   (because nothing in A[1..i-1] has been changed)
– A[i+1..j] = Aorig[i..j-1]   (because A[i] has been copied to A[i+1] and

                                                  A[i+2..j] = Aorig[i+1..j-1]
– A[k] > key   for all k in {i+1,...,j}  (because A[i] has been copied to A[i+1])

After the decrement “i--”, the invariant holds because i-1 is replaced by i.

for j := 2 to n do
  key := A[j]
  i := j-1
  while i>0 and A[i]>key do
    A[i+1] := A[i]
    i--
  A[i+1] := key
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Example: Insertion Sort/4
External for loop:
 (i)  A[1..j-1] is sorted
(ii)  A[1..j-1]  9 Aorig[1..j-1] 
Internal while loop:
– A[1..i] = Aorig[1..i]
– A[i+2..j] = Aorig[i+1..j-1]
– key < A[k]   for all k in {i+2,...,j} 

     Termination internal while loop
The while loop terminates, since i is decremented in each round.
Termination can be due to two reasons: 
i=0: A[2..j] = Aorig[1..j-1] and key < A[k]  for all k in {2,...,j} (because of the invariant)
       implies    key, A[2..j] is a sorted version of Aorig[1..j]
A[i] 5 key: A[1..i] = Aorig[1..i], A[i+2..j] = Aorig[i+1..j-1], key = Aorig[j]
                  implies   A[1..i], key, A[i+2..j]    is a sorted version of  Aorig[1..j] 

for j := 2 to n do
  key := A[j]
  i := j-1
  while i>0 and A[i]>key do
    A[i+1] := A[i]
    i--
  A[i+1] := key
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Example: Insertion Sort/5
External for loop:
 (i)  A[1..j-1] is sorted
(ii)  A[1..j-1]  9 Aorig[1..j-1] 
Internal while loop:
– A[1..i] = Aorig[1..i]
– A[i+2..j] = Aorig[i+1..j-1]
– key < A[k]   for all k in {i+2,...,j} 

     Maintenance of external for loop
When the internal while loop terminates, we have (see previous slide):
               A[1..i], key, A[i+2..j]    is a sorted version of  Aorig[1..j] 
After 
– assigning  key to A[i+1]   and
– Incrementing  j,

the invariant of the external loop holds again.

for j := 2 to n do
  key := A[j]
  i := j-1
  while i>0 and A[i]>key do
    A[i+1] := A[i]
    i--
  A[i+1] := key
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Example: Insertion Sort/6
External for loop:
 (i)  A[1..j-1] is sorted
(ii)  A[1..j-1]  9 Aorig[1..j-1] 
Internal while loop:
– A[1..i] = Aorig[1..i]
– A[i+2..j] = Aorig[i+1..j-1]
– key < A[k]   for all k in {i+2,...,j} 

     Termination of external for loop
The for loop terminates because j is incremented in each round.
Upon termination,  j = n+1 holds.
In this situation, the loop invariant of the for loop says:

A[1..n] is sorted and contains the same values as Aorig[1..n] 

That is, A has been sorted.

for j := 2 to n do
  key := A[j]
  i := j-1
  while i>0 and A[i]>key do
    A[i+1] := A[i]
    i--
  A[i+1] := key
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Example: Bubble Sort
INPUT: A[1..n] – an array of integers
OUTPUT:  permutation of  A s . t .  A[1] ≤ A[2]≤ … ≤ A[n]

for j  : =  1 to n -1 do 
  for i  : =  n downto j + 1 do
    if A [i-1 ]  >  A [i] then
      s w a p (A ,i-1,i)

• What is a good loop invariant for the outer loop?
(i.e., a property that always holds at the end of line 1)

• … and what is a good loop invariant for the inner loop?
(i.e., a property that always holds at the end of line 2) 
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Example: Bubble Sort

A
1 nj

1 3 42 5 7 9 8 6

 Strategy
• Start from the back 

and compare pairs 
of adjacent elements.

• Swap the elements 
if the larger comes 
before the smaller.

• In each step 
the smallest element 
of the unsorted part 
is moved to the beginning 
of the unsorted part and the 
sorted part grows by one.

44 55 12 42 94 18 06 67
06 44 55 12 42 94 18 67
06 12 44 55 18 42 94 67
06 12 18 44 55 42 67 94
06 12 18 42 44 55 67 94
06 12 18 42 44 55 67 94 
06 12 18 42 44 55 67 94
06 12 18 42 44 55 67 94
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Loop Invariants for Bubble Sort
• Outer loop: “A[1..j-1] is sorted and contains

                    the j-1 smallest values of the array”
Note: loop finishes with j = n
In the end: 
                  A[1..n-1] is sorted and minimum,
                  hence, A[1..n] is sorted

• Inner loop: “A[i] is the minimum in A[i..n]”
Note: loop finishes with i = j
In the end:

            A[j] is the minimum in A[j..n],
 which implies the outer loop invariant
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Example: Selection Sort

• What is a good loop invariant for the outer loop?
• … and what is a good loop invariant for the inner loop?

INPUT: A[1..n] – an array of integers
OUTPUT:  a permutation of  A such that  A[1] ≤ A[2] ≤ … ≤A[n]

for j  : =  1 to n-1 do 
  min : =  A [j] ;  minpos : = j
  for i  : =  j + 1 to n do
    if A [i]  < min then min : = A [i] ;  minpos : = i ;
  A[minpos]  : =  A [j] ;  A [j]  : =  min
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Example: Selection Sort

A
1 nj

1 3 42 5 7 8 9 6

i

Strategy
• Start empty handed.
• Enlarge the sorted part 

by swapping the first element 
of the unsorted part 
with the smallest element 
of the unsorted part.

• Continue until the unsorted part 
consists of one element only.

44  55  12  42  94  18  06  67
06  55  12  42  94  18  44  67
06  12  55  42  94  18  44  67
06  12  18  42  94  55  44  67
06  12  18  42  94  55  44  67
06  12  18  42  44  55  94  67
06  12  18  42  44  55  94  67
06  12  18  42  44  55  67  94
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Loop Invariants for Selection Sort
• Outer loop: “A[1..j-1] sorted and contains

                    the j-1 smallest values of the array”
Note: loop finishes with j = n
In the end: A[1..n-1] is sorted and minimum,
                  hence, A[1..n] is sorted

• Inner loop: “min holds the minimum of A[j..i-1] and
                   minpos holds the position of the minimum”
Note: loop finishes with i = n+1
In the end: min holds the minimum of A[j..n]

          then, swap(minpos,j) puts min into j,
          which implies the outer loop invariant
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Exercise
• Apply the same approach that we used for insertion sort 

to prove the correctness of bubble sort and 
selection sort. 
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Math Refresher
● Arithmetic progression

● Geometric progression (for a number a ≠ 1)

∑i=0

n
a i=1,a2,...,an=-1−an,1./-1−a.

∑i= 0

n
i=0,1,...,n=n -n,1./2
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Induction Principle
We want to show that property P is true 
for all integers n  6 n0.

Basis: prove that P is true for n0. 

Inductive step: prove that if P is true for all k
                such that n0  5 k  5 n – 1 then P is also true for n.

Exercise: Prove that every Fibonacci number 
     of the form fib(3n) is even
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Summary
● Algorithmic complexity
• Asymptotic analysis

– Big O and Theta notation
– Growth of functions and asymptotic notation

• Correctness of algorithms
– Pre/Post conditions
– Invariants

• Special case analysis


