Data Structures and Algorithms

Chapter 2

Werner Nutt

Acknowledgments

- The course follows the book "Introduction to Algorithms"", by Cormen, Leiserson, Rivest and Stein, MIT Press [CLRST]. Many examples displayed in these slides are taken from their book.
- These slides are based on those developed by Michael Böhlen for this course.
(See http://www.inf.unibz.it/dis/teaching/DSA/)
- The slides also include a number of additions made by Roberto Sebastiani and Kurt Ranalter when they taught later editions of this course
(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)

DSA, Chapter 2: Overview

- Complexity of algorithms
- Asymptotic analysis
- Correctness of algorithms
- Special case analysis

DSA, Chapter 2: Overview

- Complexity of algorithms
- Asymptotic analysis
- Special case analysis
- Correctness of algorithms

Analysis of Algorithms

- Efficiency:
- Running time
- Space used
- Efficiency is defined as a function of the input size:
- Number of data elements (numbers, points)
- The number of bits of an input number

The RAM Model

We study complexity on a simplified machine model, the RAM (= Random Access Machine):

- accessing and manipulating data takes a (small) constant amount of time
Among the instructions (each taking constant time), we usually choose one type of instruction as a characteristic operation that is counted:
- arithmetic (add, subtract, multiply, etc.)
- data movement (assign)
- control flow (branch, subroutine call, return)
- comparison

Data types: integers, characters, and floats

Analysis of Insertion Sort

Running time as a function of the input size (exact analysis)

$$
\begin{aligned}
& \text { for } \mathrm{j}:=2 \text { to } \mathrm{n} \text { do } \\
& \text { key := A[j] } \\
& \text { // Insert A[j] into A[1..j-1] } \\
& \text { i := j-1 } \\
& \text { while i>0 and } A[i]>k e y \text { do } \\
& \text { A[i+1] := A[i] } \\
& \text { i-- } \\
& \text { A[i+1]:= key }
\end{aligned}
$$

t_{j} is the number of times the while loop is executed, i.e.,
$\left(t_{j}-1\right)$ is number of elements in the initial segment greater than $A[j]$

Analysis of Insertion Sort/2

- The running time of an algorithm for a given input is the sum of the running times of each statement.
- A statement
- with cost c
- that is executed n times
contributes $c^{*} n$ to the running time.
- The total running time $T(n)$ of insertion sort is

$$
\begin{aligned}
T(n)= & \mathrm{c} 1^{*} \mathrm{n}+\mathrm{c} 2^{*}(\mathrm{n}-1)+\mathrm{c} 3^{*}(\mathrm{n}-1)+\mathrm{c} 4 * \sum_{j=2}^{n} t_{j} \\
& +\mathrm{c} 5 \sum_{j=2}^{n}\left(t_{j}-1\right)+\mathrm{c} 6 \sum_{j=2}^{n}\left(t_{j}-1\right)+\mathrm{c} 7^{*}(\mathrm{n}-1)
\end{aligned}
$$

Analysis of Insertion Sort/3

- The running time is not necessarily equal for every input of size n
- The performance depends on the details of the input (not only length n)
- This is modeled by t_{j}
- In the case of Insertion Sort, the time t_{j} depends on the original sorting of the input array

Performance Analysis

- Often it is sufficient to count the number of iterations of the core (innermost) part
- no distinction between comparisons, assignments, etc (that means, roughly the same cost for all of them)
- gives precise enough results
- In some cases the cost of selected operations dominates all other costs.
- disk I/O versus RAM operations
- database systems

Worst/Average/Best Case

- Analyzing Insertion Sort's
- Worst case: elements sorted in inverse order, $t_{j}=j$, total running time is quadratic (time $=\mathrm{an}^{2}+\mathrm{bn}+\mathrm{c}$)
- Average case (= average of all inputs of size n): $t_{j}=j / 2$, total running time is quadratic (time $=a n^{2}+b n+c$)
- Best case: elements already sorted, $t_{j}=1$, innermost loop is never executed, total running time is linear (time = an+b)
- How can we define these concepts formally?
... and how much sense does "best case" make?

Worst/Average/Best Case/2

For a specific size of input size n, investigate running times for different input instances:

Worst/Average/Best Case/3

For inputs of all sizes:

Best/Worst/Average Case/4

Worst case is most often used:

- It is an upper-bound
- In certain application domains (e.g., air traffic control, surgery) knowing the worst-case time complexity is of crucial importance
- For some algorithms, worst case occurs fairly often
- The average case is often as bad as the worst case

The average case depends on assumptions

- What are the possible input cases?
- What is the probability of each input?

Analysis of Linear Search

```
INPUT: A[1..n] - an array of integers,
q - an integer.
OUTPUT: \(j\) s.t. \(\mathrm{A}[j]=q\), or -1 if \(\forall j(1 \leq j \leq n): \mathrm{A}[j] \neq q\)
j \(:=1\)
while \(j \leq n\) and \(A[j]\) ! \(=q\) do \(j++\)
if \(j \leq n\) then return \(j\)
else return -1
```

- Worst case running time: n
- Average case running time: $(n+1) / 2$ (if q is present)
... under which assumption?

Binary Search: Idea

- Search in a sorted array
- Check the element in the middle of the array
- If we have found the search value, we are done
- If not, check whether the search value has to be in the left or in the right half of the array
- Depending on the check, continue with the left or the right half ...

Binary Search, Recursive Version

INPUT: A[1..n] - sorted (increasing) array of integers, q - integer. OUTPUT: an index j such that $A[j]=q$. -1 , if $\forall j(1 \leq j \leq n)$: $A[j] \neq q$
searchRec (A, q)
$\operatorname{searchRecAux}(A, q, 1, n)$
$\operatorname{searchRecAux}(A, q, 1, r)$
$m:=\lfloor(1+r) / 2\rfloor ;$
if $1>r$
then return -1
else if $A(m)=q$
then return m
else if $q<A(m)$
then return $\operatorname{searchRecAux}(A, q, 1, m-1)$
else return searchRecAux $(A, q, m+1, r)$

Binary Search, Iterative Version

INPUT: A[1..n] - sorted (increasing) array of integers, \boldsymbol{q} - integer. OUTPUT: an index j such that $A[J]=q$. -1 , if $\forall j(1 \leq j \leq n)$: $A[j] \neq q$

```
searchIter(A,q)
    l := 1; r := n;
    m := \(l+r)/2\rfloor;
    while l \leq r and A(m) != q do
    if q < A(m)
        then r:=m-1
            else l:=m+1
        m := \(l+r)/2\rfloor;
    if l > r
        then return -1
        else return m
```


Analysis of Binary Search

How many times is the loop executed?

- With each execution the difference between l and r is cut in half
- Initially the difference is n
- The loop stops when the difference becomes 0 (less than 1)
- How many times do you have to cut n in half to get 0 ?
- $\log n$ - better than the brute-force approach of linear search (n).

Linear vs Binary Search

- Costs of linear search: n
- Costs of binary search: $\log (\mathrm{n})$
- Should we care?
- Phone book with n entries:

$$
\begin{aligned}
& -n=200,000, \quad \log n=\log 200,000=8+10 \\
& -n=2 \mathrm{M}, \quad \log 2 \mathrm{M}=1+10+10 \\
& -n=20 \mathrm{M}, \quad \log 20 \mathrm{M}=5+20
\end{aligned}
$$

DSA, Part 2: Overview

- Complexity of algorithms
- Asymptotic analysis
- Special case analysis
- Correctness of algorithms

Asymptotic Analysis

- Goal: simplify the analysis of the running time by getting rid of details, which are affected by specific implementation and hardware
- "rounding" of numbers: $1,000,001 \approx 1,000,000$
- "rounding" of functions: $3 n^{2} \approx n^{2}$
- Capturing the essence: how the running time of an algorithm increases with the size of the input in the limit
- Asymptotically more efficient algorithms are best for all but small inputs

Asymptotic Notation

The "big-Oh" O-Notation

- talks about asymptotic upper bounds
$-f(n)=O(g(n))$ iff
there exist $c>0$ and $n_{0}>0$,
s.t. $f(n) \leq c g(n)$ for $n \geq n_{0}$
$-f(n)$ and $g(n)$ are functions over non-negative integers

Used for worst-case analysis

Asymptotic Notation, Example

$$
f(n)=2 n^{2}+3(n+1), \quad g(n)=3 n^{2}
$$

Values of $f(n)=2 n^{2}+3(n+1)$:

$$
2+6, \quad 8+9, \quad 18+12, \quad 32+15
$$

Values of $g(n)=3 n^{2}$:

$$
3, \quad 12, \quad 27, \quad 64
$$

From $n_{0}=4$ onward, we have $f(n) \leq g(n)$

Asymptotic Notation, Examples

- Simple Rule: We can always drop lower order terms and constant factors, without changing big Oh:
$-7 n+3$
is
$\mathrm{O}(n)$
$-8 n^{2} \log n+5 n^{2}+n \quad$ is $\quad \mathrm{O}\left(n^{2} \log n\right)$
$-50 n \log n \quad$ is $\mathrm{O}(n \log n)$
- Note:
$-50 n \log n$ is $\mathrm{O}\left(n^{2}\right)$
$-50 n \log n$ is $\mathrm{O}\left(n^{100}\right)$
but this is less informative than saying
$-50 n \log n$ is $\mathrm{O}(n \log n)$

Asymptotic Notation/2

- The "big-Omega" Ω-Notation
- asymptotic lower bound
$-f(n)=\Omega(g(n))$ iff there exist $c>0$ and $n_{0}>0$, s.t. $\subset g(n) \leq f(n)$, for $n \geq n_{0}$
- Used to describe lower bounds of algorithmic problems
- E.g., searching in a sorted array

with linear search is $\Omega(n)$, with binary search is $\Omega(\log n)$

Asymptotic Notation/3

- The "big-Theta" Θ-Notation
- asymptotically tight bound
$-f(n)=\Theta(g(n))$ if there exists
$c_{1}>0, c_{2}>0$, and $n_{0}>0$,
s.t. for $n \geq n_{0}$
$c_{1} g(n) \leq f(n) \leq c_{2} g(n)$
- $f(n)=\Theta(g(n))$ iff

$$
f(n)=O(g(n)) \text { and } f(n)=\Omega(g(n))
$$

- Note: $O(f(n))$ is often used when $\Theta(f(n))$ is meant

Asymptotic Notation/4

- Analogy with real numbers

$$
\begin{aligned}
& -f(n)=O(g(n)) \cong f \leq g \\
& -f(n)=\Omega(g(n)) \cong f \geq g \\
& -f(n)=\Theta(g(n)) \cong f=g
\end{aligned}
$$

- Abuse of notation:

$$
\begin{array}{r}
f(n)=O(g(n)) \text { actually means } \\
f(n) \in O(g(n))
\end{array}
$$

Exercise: Asymptotic Growth

Order the following functions according to their asymptotic growth.
$-2^{n}+n^{2}$
$-3 n^{3}+n^{2}-2 n^{3}+5 n-n^{3}$
$-20 \log _{2} 2 n$

- $20 \log _{2} n^{2}$
$-20 \log _{2} 4^{n}$
$-20 \log _{2} 2^{n}$
-3^{n}

Comparison of Running Times

Determining the maximal problem size

Running Time $T(n)$ in $\mu \mathrm{s}$	1 second	1 minute	1 hour
$400 n$	2,500	150,000	$9,000,000$
$20 n \log n$	4,096	166,666	$7,826,087$
$2 n^{2}$	707	5,477	42,426
n^{4}	31	88	244
2^{n}	19	25	31

DSA, Part 2: Overview

- Complexity of algorithms
- Asymptotic analysis
- Special case analysis
- Correctness of algorithms

Special Case Analysis

- Consider extreme cases and make sure your solution works in all cases.
- The problem: identify special cases.
- This is related to INPUT and OUTPUT specifications.

Special Cases

- empty data structure (array, file, list, ...)
- single element data structure
- completely filled data structure
- entering a function
- termination of a function
- zero, empty string
- negative number
- border of domain
- start of loop
- end of loop
- first iteration of loop

Sortedness

The following algorithm checks whether an array is sorted.

```
INPUT: A[l..n] - an array of integers.
OUTPUT: TRUE if A is sorted; FALSE otherwise
for i := l to n
    if A[i] \geqA[i+l] then return FALSE
return TRUE
```

Analyze the algorithm by considering special cases.

Sortedness/2

INPUT: A[l..n] - an array of integers.
OUTPUT: TRUE if A is sorted; FALSE otherwise
for $\mathrm{i}:=\mathrm{l}$ to n
if $A[i] \geq A[i+l]$ then return FALSE
return TRUE

- Start of loop, $\mathrm{i}=1 \rightarrow$ OK
- End of loop, $i=n \rightarrow$ ERROR (tries to access $A[n+1]$)

Sortedness/3

INPUT: A[l..n] - an array of integers.
OUTPUT: TRUE if A is sorted; FALSE otherwise

```
for i := l to n-l
    if A[i] \geqA[i+l] then return FALSE
return TRUE
```

- Start of loop, $\mathrm{i}=1$ © OK
- End of loop, $\mathrm{i}=\mathrm{n}-1$ © P OK
- $A=[1,2,3]$ © First iteration, from $i=1$ to $i=2 ~ © ~ O K$
- $A=[1,2,2]$ © ERROR (if $A[i]=A[i+1]$ for some i)

Sortedness/4

INPUT: A[l..n] - an array of integers.
OUTPUT: TRUE if A is sorted; FALSE otherwise
for $\mathrm{i}:=1$ to $\mathrm{n}-1$
if $A[i]>A[i+l]$ then return FALSE
return TRUE

- Start of loop, $\mathrm{i}=1 \rightarrow$ OK
- End of loop, $\mathrm{i}=\mathrm{n}-1 \rightarrow$ OK
- $A=[1,2,3] \rightarrow$ First iteration, from $i=1$ to $i=2 \rightarrow$ OK
- $A=[1,1,1] \rightarrow$ OK
- Empty data structure, $\mathrm{n}=0 \rightarrow$? (for loop)
- $\mathrm{A}=[-1,0,1,-3] \rightarrow \mathrm{OK}$

Binary Search, Variant 1

Analyze the following algorithm by considering special cases.

```
l := 1; r := n
do
    m:=\lfloor(l+r)/2\rfloor
    if A[m] = q then return m
    else if A[m] > q then r := m-1
    else l := m+1
while l < r
return -1
```


Binary Search, Variant 1

```
l := 1; r := n
do
    m := \(l+r)/2\rfloor
    if A[m] = q then return m
    else if A[m] > q then r := m-1
    else l := m+1
while l < r
return -1
```

- Start of loop \rightarrow OK
- End of loop, I=r \rightarrow Error! Example: search 3 in [3 5 7]

Binary Search, Variant 1

```
l := 1; r := n
do
    m := \(l+r)/2\rfloor
    if A[m] = q then return m
    else if A[m] > q then r := m-1
    else l := m+1
while l <= r
return -1
```

- Start of loop \rightarrow OK
- End of loop, $\mathrm{I}=\mathrm{r} \rightarrow$ OK
- First iteration \rightarrow OK
- $A=[1,1,1] \rightarrow$ OK
- Empty array, n=0 \rightarrow Error! Tries to access A[0]
- One-element array, $\mathrm{n}=1 \rightarrow$ OK

Binary Search, Variant 1

```
l := 1; r := n
if r < l then return -1;
do
    m := \(l+r)/2\rfloor
    if A[m] = q then return m
    else if A[m] > q then r := m-1
    else l := m+1
while l <= r
return -1
```

- Start of loop \rightarrow OK
- End of loop, $\mathrm{I}=\mathrm{r} \rightarrow$ OK
- First iteration \rightarrow OK
- $A=[1,1,1] \rightarrow$ OK
- Empty data structure, $\mathrm{n}=0 \rightarrow \mathrm{OK}$
- One-element data structure, $\mathrm{n}=1 \rightarrow$ OK

Binary Search, Variant 2

Analyze the following algorithm by considering special cases

$$
\begin{aligned}
& l:=1 ; r:=n \\
& \text { while } l<r \text { do } \\
& \quad \mathrm{m}:=\lfloor(l+r) / 2\rfloor \\
& \text { if } A[\mathrm{~m}]<=q \\
& \text { then } l:=m+1 \text { else } r:=m \\
& \text { if } A[l-1]=q \\
& \text { then return } l-1 \text { else return }-1
\end{aligned}
$$

Binary Search, Variant 3

Analyze the following algorithm by considering special cases

$$
\begin{aligned}
& l:=1 ; r:=n \\
& \text { while } l<=r \text { do } \\
& m:=\lfloor(l+r) / 2\rfloor \\
& \text { if } A[\mathrm{~m}]<=q \\
& \text { then } l:=m+1 \text { else } r:=m \\
& \text { if } A[l-1]=q \\
& \text { then return } l-1 \text { else return }-1
\end{aligned}
$$

Insertion Sort, Slight Variant

- Analyze the following algorithm by considering special cases
- Hint: beware of lazy evaluations

INPUT: A[l..n] - an array of integers OUTPUT: permutation of As.t.

$$
\mathrm{A}[1] \leq \mathrm{A}[\mathrm{R}] \leq \ldots \leq \mathrm{A}[\mathrm{n}]
$$

for $j:=2$ to n do
key := A[j]; i := j-l;
while $A[i]>$ key and $i>0$ do
$\mathrm{A}[\mathrm{i}+\mathrm{l}]:=\mathrm{A}[\mathrm{i}] ; \mathrm{i}-$ -
$\mathrm{A}[\mathrm{i}+\mathrm{l}]:=\mathrm{key}$

Merge

Analyze the following algorithm by considering special cases.

INPUT: $\mathrm{A}[1 . . \mathrm{nl}], \mathrm{B}[1 . . \mathrm{n} 2]$ sorted arrays of integers, C[l..nl+n2] array

OUTPUT: permutation C of A.B s.t.
$\mathrm{C}[1] \leq \mathrm{C}[2] \leq \ldots \leq \mathrm{C}[\mathrm{nl}+\mathrm{n} 2]$
i:=1; j:=1;
for $\mathrm{k}:=1$ to $\mathrm{nl}+\mathrm{n}$ 2 do
if $A[i]$ <= $B[j]$
then $C[k]:=A[i] ; i++;$
else $C[k]:=B[j] ; j++;$
return C;

Merge/2

INPUT: $\mathrm{A}[1 . . \mathrm{nl}], \mathrm{B}[1 . . \mathrm{n} 2]$ sorted arrays of integers, $C[1 . . n l+n 2]$ array OUTPUT: permutation C of A.B s.t.

$$
\mathrm{C}[1] \leq \mathrm{C}[2] \leq \ldots \leq \mathrm{C}[\mathrm{n} 1+\mathrm{n} 2]
$$

i:= l ;j:= l;
for $k:=1$ to $\mathrm{nl}+\mathrm{n}$ 2 do
if $\mathrm{j}>\mathrm{n}$ 2 or ($\mathrm{i}<=\mathrm{nl}$ and $\mathrm{A}[\mathrm{i}]<=\mathrm{B}[\mathrm{j}]$)
then $C[k]:=A[i] ; i++$;
else $C[k]:=B[j] ; j++;$
return C;

Merge/3

To analyze the algorithm on the previous slide, we distinguish 4 cases

- neither A nor B exhausted implies "A[i] $\leq \mathrm{B}[j]$ " decides
- B exhausted, A not, implies j > n2, implies A wins
- B not exhausted, A exhausted, implies $\mathrm{j} \leq \mathrm{n} 2$ \&\& $\mathrm{i}>\mathrm{n}$, implies B wins
- A, B both exhausted, implies $k>n 1+n 2$, implies algorithm stops

DSA, Part 2: Overview

- Complexity of algorithms
- Asymptotic analysis
- Special case analysis
- Correctness of algorithms

Correctness of Algorithms

- An algorithm is correct if for every legal input, it terminates and produces the desired output.
- Automatic proof of correctness is not possible (this is one of the so-called "undecidable problems")
- There are practical techniques and rigorous formalisms that help one to reason about the correctness of (parts of) algorithms.

Partial and Total Correctness

- Partial correctness

IF this point is reached, THEN this is the output

- Total correctness

INDEED this point is reached, AND this is the output
every legal input

Assertions

- To prove partial correctness we associate a number of assertions (statements about the state of the execution) with specific checkpoints in the algorithm.
- E.g., "A[1], ..., $A[j]$ form an increasing sequence"
- Preconditions - assertions that must be valid before the execution of an algorithm or a subroutine (INPUT)
- Postconditions - assertions that must be valid after the execution of an algorithm or a subroutine (OUTPUT)

Pre- and Postconditions of Linear Search

```
INPUT: A[l..n] - a array of integers,
    \(q\) - an integer.
OUTPUT: \(j\) s.t. \(\mathrm{A}[j]=q .-1\) if \(\forall i(1 \leq i \leq n): \mathrm{A}[i] \neq q\)
j \(:=1\)
while \(j \leq n\) and \(A[j]\) ! \(=q\) do \(j++\)
if \(j \leq n\) then return \(j\)
    else return -1
```

How can we be sure that

- whenever the precondition holds,
- also the postcondition holds?

Loop Invariant in Linear Search

$$
\begin{aligned}
& j:=1 \\
& \text { while } j \leq n \text { and } A[j]!=q \text { do } j++ \\
& \text { if } j \leq n \text { then return } j \\
& \quad \text { else return }-1
\end{aligned}
$$

Whenever the beginning of the loop is reached, then

$$
\mathrm{A}[\mathrm{i}]!=\mathrm{q} \text { for all } \mathrm{i} \text { where } 1 \leq \mathrm{i}<\mathrm{j}
$$

When the loop stops, there are two cases
$-\mathrm{j}=\mathrm{n}+1$, which implies $A[\mathrm{i}]$!= q for all $\mathrm{i}, 1 \leq \mathrm{i}<\mathrm{n}+1$
$-A[j]=q$

Loop Invariant in Linear Search

$$
\begin{aligned}
& j:=1 \\
& \text { while } j \leq n \text { and } A[j]!=q \text { do } j++ \\
& \text { if } j \leq n \text { then return } j \\
& \text { else return }-1
\end{aligned}
$$

Note: The condition
$A[i]$! $=\mathrm{q}$ for all i where $1 \leq \mathrm{i}<\mathrm{j}$

- holds when the loop is entered for the first time
- continues to hold until we reach the loop for the last time

Loop Invariants

- Invariants: assertions that are valid every time the beginning of the loop is reached (many times during the execution of an algorithm)
- We must show three things about loop invariants:
- Initialization: it is true prior to the first iteration.
- Maintenance: if it is true before an iteration, then it is true after the iteration.
- Termination: when a loop terminates, the invariant gives a useful property to show the correctness of the algorithm

Example: Binary Search/1

- We want to show that q is not in A if -1 is returned.
- Invariant:

$$
\begin{aligned}
& \forall \mathrm{i} \in[1 . . \mathrm{l}-1]: \mathrm{A}[\mathrm{i}]<\mathrm{q} \quad \text { (ia) } \\
& \forall \mathrm{i} \in[\mathrm{r}+1 . . \mathrm{n}]: A[i]>\mathrm{q}
\end{aligned}
$$

- Initialization: $/=1, r=n$

```
l:= 1; r:= n;
m:= \(l+r)/2\rfloor;
while l <= r and A(m) != q do
    if q < A(m)
        then r:=m-1
        else l:=m+1
    m:=\(l+r)/2\;
if l > r
    then return -1
    else return m
``` the invariant holds because there are no elements to the left of \(I\) or to the right of \(r\). \(I=1\) yields \(\forall i \in[1 . .0]: A[i]<q\) this holds because [1..0] is empty
\(r=n\) yields \(\forall i \in[n+1 . . n]: A[i]>q\)
this holds because \([n+1 . . n]\) is empty

\section*{Example: Binary Search/2}
- Invariant:
\[
\begin{aligned}
& \forall i \in[1 . . l-1]: A[i]<q \quad \text { (ia) } \\
& \forall i \in[r+1 . . n]: A[i]>q(i b)
\end{aligned}
\]
```

                        l:= 1; r:= n;
    m:= $l+r)/2\rfloor;
while l <= r and A(m) != q do
    if q<A(m)
        then r:=m-1
        else l:=m+1
        m := \(l+r)/2\rfloor;
if l > r
    then return -1
    else return m
```
- Maintenance: \(1 \leq \mathrm{I}, \mathrm{r} \leq \mathrm{n}, \mathrm{m}=\lfloor(\mathrm{l}+\mathrm{r}) / 2\rfloor$

We consider two cases:

- A[m] != q \& q < A[m]: implies r=m-1 A sorted implies $\forall k \in[r+1 . . n]: A[k]>q$
- A[m] != q \& A[m] < q: implies $I=m+1$ A sorted implies $\forall k \in[1 . . l-1]: A[k]<q$

Example: Binary Search/3

- Invariant:

$$
\begin{aligned}
& \forall i \in[1 . . l-1]: A[i]<q \quad \text { (ia) } \\
& \forall i \in[r+1 . . n]: A[i]>q(i b)
\end{aligned}
$$

- Termination: $1 \leq \mathrm{l}, \mathrm{r} \leq \mathrm{n}, \mathrm{l} \leq \mathrm{r}$

Two cases:

$$
\begin{array}{lll}
\mathrm{I}:=\mathrm{m}+1 & \text { implies } & \text { Inew }=\lfloor(\mid+\mathrm{r}) / 2\rfloor+1>\text { lold } \\
\mathrm{r}:=\mathrm{m}-1 & \text { implies } & \text { rnew }=\lfloor(1+\mathrm{r}) / 2\rfloor-1<\text { rold }
\end{array}
$$

- The range gets smaller during each iteration and the loop will terminate when $I \leq r$ no longer holds

Example: Insertion Sort/1

Loop invariants:

External "for" loop
Let $\mathrm{A}^{\text {orig }}$ denote the array at the beginning of the for loop:
$A[1 . . j-1]$ is sorted

$$
\begin{aligned}
& \text { for } j:=2 \text { to } n \text { do } \\
& \text { key }:=A[j] \\
& i \quad:=j-1 \\
& \text { while } i>0 \text { and } A[i]>k e y \text { do } \\
& A[i+1]:=A[i] \\
& \text { i-- } \\
& \text { A[i+1] }:=\text { key }
\end{aligned}
$$

$A[1 . . j-1] \in A^{\text {orig }}[1 . . j-1]$

Internal "while" loop
Let $A^{\text {orig }}$ denote the array at beginning of the while loop:

- $A[1 . . i]=A^{\text {orig }}[1 . . i]$
- $A[i+2 . . j]=A^{\text {orig }[i+1 . . j-1] ~}$
- $A[k]>$ key for all k in $\{i+2, \ldots, j\}$

Example: Insertion Sort/2

External for loop:
(i) $A[1 \ldots j-1]$ is sorted
(ii) $A[1 \ldots . . j-1] \in A^{\text {orig }}[1 . . j-1]$

Internal while loop:
$-A[1 . . i]=A^{\text {orig }[1 . . i] ~}$
$-A[i+2 . . j]=A^{\text {orig }[i+1 . . j-1]}$

- A[k] > key for all k in $\{i+2, \ldots, j\}$

```
for j := 2 to n do
    key := A[j]
    i := j-1
    while i>0 and A[i]>key do
        A[i+1] := A[i]
        i--
    A[i+1] := key
```


Initialization:

External loop: (i), (ii) $\mathrm{j}=2: \mathrm{A}[1 . .1] \in \mathrm{A}^{\text {orig }[1 . .1] ~ a n d ~ i s ~ t r i v i a l l y ~ s o r t e d ~}$ Internal loop: $\mathrm{i}=\mathrm{j}-1$:

- $A[1 . . . j-1]=A^{\text {orig }}[1 . . j-1]$, since nothing has happend
$-A[j+1 . . j]=A^{\text {orig }}[j . . j-1]$, since both sides are empty
- $A[k]>$ key holds trivially for all k in the empty set

Example: Insertion Sort/3

External for loop:
(i) $A[1 . . j-1]$ is sorted
(ii) $\mathrm{A}[1 . . \mathrm{j}-1] \in \mathrm{A}^{\text {orig }}[1 . . \mathrm{j}-1]$

Internal while loop:
$-A[1 . . i]=A^{\text {orig }[1 . . i] ~}$
$-A[i+2 . . j]=A^{\text {orig }[i+1 . . j-1] ~}$

- A[k] > key for all k in $\{i+2, \ldots, j\}$

$$
\begin{aligned}
& \text { for } j:=2 \text { to } n \text { do } \\
& \text { key }:=A[j] \\
& \text { i }:=j-1 \\
& \text { while } i>0 \text { and } A[i]>\text { key do } \\
& A[i+1]:=A[i] \\
& \text { i-- } \\
& \text { A[i+1] }:=\text { key }
\end{aligned}
$$

Maintenance internal while loop

Before the decrement "i--", the following facts hold:
$-A[1 . . i-1]=A^{\text {orig }}[1 . . i-1] \quad$ (because nothing in $A[1 . . i-1]$ has been changed)

- $A[i+1 . . j]=A^{\text {orig }[i . . j-1] ~(b e c a u s e ~} A[i]$ has been copied to $A[i+1]$ and $A[i+2 . . j]=A^{\text {orig }}[i+1 . . j-1]$
- $A[k]>$ key for all k in $\{i+1, \ldots, j\}$ (because $A[i]$ has been copied to $A[i+1]$)

After the decrement " $i--$ ", the invariant holds because $i-1$ is replaced by i.

Example: Insertion Sort/4

External for loop:
(i) $A[1 . . j-1]$ is sorted
(ii) $\mathrm{A}[1 . . \mathrm{j}-1] \in \mathrm{A}^{\text {orig }}[1 . . \mathrm{j}-1]$

Internal while loop:
$-A[1 . . i]=A^{\text {orig }[1 . . i] ~}$
$-A[i+2 . . j]=A^{\text {orig }}[i+1 . . j-1]$

- key < A[k] for all k in $\{i+2, \ldots, j\}$

$$
\begin{aligned}
& \text { for } j:=2 \text { to } n \text { do } \\
& \text { key }:=A[j] \\
& \text { i }:=j-1 \\
& \text { while } i>0 \text { and } A[i]>\text { key do } \\
& A[i+1]:=A[i] \\
& \text { i-- } \\
& \text { A[i+1] }:=\text { key }
\end{aligned}
$$

Termination internal while loop

The while loop terminates, since i is decremented in each round.
Termination can be due to two reasons:
$\mathrm{i}=0$: $\mathrm{A}[2 . . \mathrm{j}]=\mathrm{A}^{\text {orig }[1 . . j-1] ~ a n d ~ k e y ~<~} \mathrm{~A}[\mathrm{k}]$ for all k in $\{2, \ldots, \mathrm{j}\}$ (because of the invariant) implies key, $A[2 . . j]$ is a sorted version of $A^{\text {orig }}[1 . . j]$
$A[i] \leq$ key: $A[1 . . i]=A^{\text {orig }}[1 . . i], A[i+2 . . j]=A^{\text {orig }}[i+1 . . j-1]$, key $=A^{\text {orig }}[j]$ implies $A[1 . . i]$, key, $A[i+2 . . j]$ is a sorted version of $A^{\text {orig }}[1 . . j]$

Example: Insertion Sort/5

External for loop:
(i) $A[1 . . j-1]$ is sorted
(ii) $A[1 . . j-1] \in A^{\text {orig }}[1 . . j-1]$

Internal while loop:
$-A[1 . . i]=A^{\text {orig }[1 . . i] ~}$
$-A[i+2 . . j]=A^{\text {orig }}[i+1 . . j-1]$

- key < A[k] for all k in $\{i+2, \ldots, j\}$

$$
\begin{aligned}
& \text { for } j:=2 \text { to } n \text { do } \\
& \text { key }:=A[j] \\
& \text { i }:=j-1 \\
& \text { while } i>0 \text { and } A[i]>\text { key do } \\
& A[i+1]:=A[i] \\
& \text { i-- } \\
& \text { A[i+1] }:=\text { key }
\end{aligned}
$$

Maintenance of external for loop
When the internal while loop terminates, we have (see previous slide):

$$
A[1 . . i], \text { key, } A[i+2 . . j] \text { is a sorted version of } A \text { orig[1..j] }
$$

After

- assigning key to $A[i+1]$ and
- Incrementing j,
the invariant of the external loop holds again.

Example: Insertion Sort/6

External for loop:
(i) $A[1 . . j-1]$ is sorted
(ii) $\mathrm{A}[1 . . \mathrm{j}-1] \in \mathrm{A}^{\text {orig }}[1 . . \mathrm{j}-1]$

Internal while loop:
$-A[1 . . i]=A^{\text {orig }[1 . . i] ~}$
$-A[i+2 . . j]=A^{\text {orig }[i+1 . . j-1] ~}$

- key < A[k] for all k in $\{i+2, \ldots, j\}$

$$
\begin{aligned}
& \text { for } j:=2 \text { to } n \text { do } \\
& \text { key }:=A[j] \\
& \text { i }:=j-1 \\
& \text { while } i>0 \text { and } A[i]>\text { key do } \\
& A[i+1]:=A[i] \\
& \text { i-- } \\
& \text { A[i+1] }:=\text { key }
\end{aligned}
$$

Termination of external for loop

The for loop terminates because j is incremented in each round.
Upon termination, $\mathrm{j}=\mathrm{n}+1$ holds.
In this situation, the loop invariant of the for loop says:
$A[1 . . n]$ is sorted and contains the same values as $A^{\text {orig }}$ [1..n]
That is, A has been sorted.

Example: Bubble Sort

```
INPUT: A[1..n] - an array of integers
OUTPUT: permutation of A s.t. \(\mathrm{A}[\mathrm{l}] \leq \mathrm{A}[\mathrm{L}] \leq \ldots \leq \mathrm{A}[\mathrm{n}]\)
for \(\mathrm{j}:=1\) to \(\mathrm{n}-\mathrm{l}\) do
    for \(\mathrm{i}:=\mathrm{n}\) downto \(\mathrm{j}+\mathrm{l}\) do
        if \(A[i-1]>A[i]\) then
        \(\operatorname{swap}(A, i-1, i)\)
```

- What is a good loop invariant for the outer loop? (i.e., a property that always holds at the end of line 1)
- ... and what is a good loop invariant for the inner loop?
(i.e., a property that always holds at the end of line 2)

Example: Bubble Sort

Strategy

- Start from the back and compare pairs of adjacent elements.
- Swap the elements if the larger comes before the smaller.
- In each step the smallest element of the unsorted part is moved to the beginning of the unsorted part and the sorted part grows by one.
$44 \quad 55 \quad 12 \quad 42941806 \quad 67$
0644551242941867
$06 \quad 12445518429467$
0612184455426794
0612184244556794
0612184244556794
0612184244556794
$06 \quad 12184244556494$

Loop Invariants for Bubble Sort

- Outer loop: "A[1..j-1] is sorted and contains the $\mathrm{j}-1$ smallest values of the array"
Note: loop finishes with $\mathrm{j}=\mathrm{n}$
In the end:
$\mathrm{A}[1 . . \mathrm{n}-1]$ is sorted and minimum, hence, $\mathrm{A}[1 . . \mathrm{n}]$ is sorted
- Inner loop: "A[i] is the minimum in $A[i . . n]$ "

Note: loop finishes with $\mathrm{i}=\mathrm{j}$
In the end:
$A[j]$ is the minimum in $A[j . . n]$,
which implies the outer loop invariant

Example: Selection Sort

```
INPUT: A[1..n] - an array of integers
OUTPUT: a permutation of A such that A[l] \leqA[2]\leq... \leqA[n]
for j := l to n-1 do
    min := A[j]; minpos := j
    for i := j+l to n do
        if A[i] < min then min := A[i]; minpos := i;
    A[minpos] := A[j]; A[j] := min
```

- What is a good loop invariant for the outer loop?
- ... and what is a good loop invariant for the inner loop?

Example: Selection Sort

Strategy

- Start empty handed.
- Enlarge the sorted part by swapping the first element of the unsorted part with the smallest element of the unsorted part.
- Continue until the unsorted part consists of one element only.

| 44 | 55 | 12 | 42 | 94 | 18 | 06 | 67 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 06 | 55 | 12 | 42 | 94 | 18 | 44 | 67 |
| 06 | 12 | 55 | 42 | 94 | 18 | 44 | 67 |
| 06 | 12 | 18 | 42 | 94 | 55 | 44 | 67 |
| 06 | 12 | 18 | 42 | 94 | 55 | 44 | 67 |
| 06 | 12 | 18 | 42 | 44 | 55 | 94 | 67 |
| 06 | 12 | 18 | 42 | 44 | 55 | 94 | 67 |
| 06 | 12 | 18 | 42 | 44 | 55 | 67 | 94 |

Loop Invariants for Selection Sort

- Outer loop: "A[1..j-1] sorted and contains the $j-1$ smallest values of the array"
Note: loop finishes with $\mathrm{j}=\mathrm{n}$ In the end: $\mathrm{A}[1 . . \mathrm{n}-1]$ is sorted and minimum,
hence, $A[1 . . n]$ is sorted
- Inner loop: "min holds the minimum of $A[j . . i-1]$ and minpos holds the position of the minimum"
Note: loop finishes with $\mathrm{i}=\mathrm{n}+1$
In the end: min holds the minimum of $A[j . . n]$ then, swap(minpos, j) puts min into j , which implies the outer loop invariant

Exercise

- Apply the same approach that we used for insertion sort to prove the correctness of bubble sort and selection sort.

Math Refresher

- Arithmetic progression

$$
\sum_{i=0}^{n} i=0+1+\ldots+n=n(n+1) / 2
$$

- Geometric progression (for a number $a \neq 1$)

$$
\sum_{i=0}^{n} a^{i}=1+a^{2}+\ldots+a^{n}=\left(1-a^{n+1}\right) /(1-a)
$$

Induction Principle

We want to show that property P is true for all integers $n \geq n_{0}$.
Basis: prove that P is true for n_{0}.
Inductive step: prove that if P is true for all k
such that $n_{0} \leq k \leq n-1$ then P is also true for n.

Exercise: Prove that every Fibonacci number of the form fib(3n) is even

Summary

- Algorithmic complexity
- Asymptotic analysis
- Big O and Theta notation
- Growth of functions and asymptotic notation
- Correctness of algorithms
- Pre/Post conditions
- Invariants
- Special case analysis

