
Master Informatique 																																		1Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Data Structures and Algorithms

 Chapter 2

Werner Nutt

Master Informatique 																																		2Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Acknowledgments
• The course follows the book “Introduction to Algorithms‘”,

by Cormen, Leiserson, Rivest and Stein, MIT Press
[CLRST]. Many examples displayed in these slides are
taken from their book.

• These slides are based on those developed by
Michael Böhlen for this course.

(See http://www.inf.unibz.it/dis/teaching/DSA/)

• The slides also include a number of additions made by
Roberto Sebastiani and Kurt Ranalter when they taught
later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)

Master Informatique 																																		3Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

DSA, Chapter 2: Overview

• Complexity of algorithms

• Asymptotic analysis

• Correctness of algorithms

• Special case analysis

Master Informatique 																																		4Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

DSA, Chapter 2: Overview

• Complexity of algorithms

• Asymptotic analysis

• Special case analysis

• Correctness of algorithms

Master Informatique 																																		5Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Analysis of Algorithms

• Efficiency:

– Running time

– Space used

• Efficiency is defined as a function of the input size:

– Number of data elements (numbers, points)

– The number of bits of an input number

Master Informatique 																																		6Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

The RAM Model
We study complexity on a simplified machine model,
the RAM (= Random Access Machine):
– accessing and manipulating data takes a (small)

constant amount of time
Among the instructions (each taking constant time),
we usually choose one type of instruction as a
characteristic operation that is counted:
– arithmetic (add, subtract, multiply, etc.)
– data movement (assign)
– control flow (branch, subroutine call, return)
– comparison

Data types: integers, characters, and floats

Master Informatique 																																		7Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Analysis of Insertion Sort
Running time as a function of the input size
(exact analysis)

cost times
for j := 2 to n do c1 n
 key := A[j] c2 n-1
 // Insert A[j] into A[1..j-1]
 i := j-1 c3 n-1
 while i>0 and A[i]>key do c4
 A[i+1] := A[i] c5
 i-- c6
 A[i+1]:= key c7

∑ j=2

n
t j

∑ j=2

n
-t j−1.

∑ j=2

n
-t j−1.

n-1

t
j
 is the number of times the while loop is executed, i.e.,

(t
j
 – 1) is number of elements in the initial segment greater than A[j]

Master Informatique 																																		8Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Analysis of Insertion Sort/2
• The running time of an algorithm for a given input

is the sum of the running times of each statement.
• A statement

– with cost c
– that is executed n times

contributes c*n to the running time.
• The total running time T(n) of insertion sort is

T(n) = c1*n + c2*(n-1) + c3*(n-1) + c4 *

+ c5 + c6 + c7*(n - 1)

∑ j=2

n
t j

∑ j=2

n
-t j−1. ∑ j=2

n
-t j−1.

Master Informatique 																																		9Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Analysis of Insertion Sort/3

• The running time is not necessarily equal
for every input of size n

• The performance depends on the details of the input
(not only length n)

• This is modeled by tj

• In the case of Insertion Sort, the time tj
depends on the original sorting of the input array

Master Informatique 																																		10Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Performance Analysis
• Often it is sufficient to count the number of iterations

of the core (innermost) part

– no distinction between comparisons, assignments, etc
(that means, roughly the same cost for all of them)

– gives precise enough results

• In some cases the cost of selected operations dominates
all other costs.

– disk I/O versus RAM operations

– database systems

Master Informatique 																																		11Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Worst/Average/Best Case
• Analyzing Insertion Sort’s

– Worst case: elements sorted in inverse order, tj=j,
total running time is quadratic (time = an2+bn+c)

– Average case (= average of all inputs of size n):
tj=j/2, total running time is quadratic (time = an2+bn+c)

– Best case: elements already sorted, tj=1,
innermost loop is never executed,
total running time is linear (time = an+b)

• How can we define these concepts formally?
… and how much sense does “best case” make?

Master Informatique 																																		12Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Worst/Average/Best Case/2

For a specific size of input size n, investigate running
times for different input instances:

1n

2n

3n

4n

5n

6n = 4 3 2 1

= 1 2 3 4
}

best case

average case

worst case

input instance
A B C D E F G

ru
n
n
in

g
ti

m
e

???

Master Informatique 																																		13Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Worst/Average/Best Case/3

For inputs of all sizes:

1n

2n

3n

4n

5n

6n

Input instance size

R
un

ni
ng

 ti
m

e

1 2 3 4 5 6 7 8 9 10 11 12
…..

best-case

average-case

worst-case

Master Informatique 																																		14Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Best/Worst/Average Case/4
Worst case is most often used:
– It is an upper-bound
– In certain application domains (e.g., air traffic control,

surgery) knowing the worst-case time complexity is of
crucial importance

– For some algorithms, worst case occurs fairly often
– The average case is often as bad as the worst case

The average case depends on assumptions
– What are the possible input cases?
– What is the probability of each input?

Master Informatique 																																		15Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Analysis of Linear Search
INPUT: A[1..n] – an array of integers,
 q – an integer.
OUTPUT: j s . t . A[j] =q, or -1 i f /j(15j5n) : A[j]7q

j := 1
while j 5 n and A[j] != q do j++
if j 5 n then return j
else return -1

• Worst case running time: n
• Average case running time: (n+1)/2 (if q is present)

 … under which assumption?

Master Informatique 																																		16Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Binary Search: Idea

• Search in a sorted array
• Check the element in the middle of the array
• If we have found the search value,

we are done
• If not, check whether the search value

has to be in the left or in the right half of the array
• Depending on the check,

continue with the left or the right half ...

Master Informatique 																																		17Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Binary Search, Recursive Version
INPUT: A[1..n] – sorted (increasing) array of integers, q – integer.
OUTPUT: an index j such that A[j] = q. -1, if /j (15j5n): A[j] 7 q

searchRec(A,q)
 searchRecAux(A,q,1,n)

searchRecAux(A,q,l,r)
 m := ⌊(l+r)/2⌋ ;
 if l > r
 then return -1
 else if A(m) = q
 then return m
 else if q < A(m)
 then return searchRecAux(A,q,l,m-1)
 else return searchRecAux(A,q,m+1,r)

Master Informatique 																																		18Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Binary Search, Iterative Version
INPUT: A[1..n] – sorted (increasing) array of integers, q – integer.
OUTPUT: an index j such that A[j] = q. -1, if /j (15j5n): A[j] 7 q

searchIter(A,q)
 l := 1; r := n;
 m := ⌊(l+r)/2⌋;
 while l 5 r and A(m) != q do
 if q < A(m)
 then r:=m-1

 else l:=m+1
 m := ⌊(l+r)/2⌋;
 if l > r
 then return -1
 else return m

Master Informatique 																																		19Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Analysis of Binary Search
How many times is the loop executed?
– With each execution

the difference between l and r is cut in half
• Initially the difference is n
• The loop stops when the difference becomes 0

(less than 1)
– How many times do you have to cut n in half to get 0?
– log n – better than the brute-force approach of linear

search (n).

Master Informatique 																																		20Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Linear vs Binary Search
• Costs of linear search: n

• Costs of binary search: log(n)

• Should we care?

• Phone book with n entries:

– n = 200,000, log n = log 200,000 = 8 +10

– n = 2M, log 2M = 1 + 10 + 10

– n = 20M, log 20M = 5+20

Master Informatique 																																		21Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

DSA, Part 2: Overview

• Complexity of algorithms

• Asymptotic analysis

• Special case analysis

• Correctness of algorithms

Master Informatique 																																		22Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Asymptotic Analysis
• Goal: simplify the analysis of the running time

by getting rid of details, which are
affected by specific implementation and hardware
– “rounding” of numbers: 1,000,001 8 1,000,000
– “rounding” of functions: 3n2 8 n2

• Capturing the essence: how the running time of an
algorithm increases with the size of the input in the limit
– Asymptotically more efficient algorithms

are best for all but small inputs

Master Informatique 																																		23Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Asymptotic Notation

f -n .
()c g n:

n0 Input Size

R
un

ni
ng

 T
im

e

The “big-Oh” O-Notation

– talks about
asymptotic upper bounds

– f(n) 2 O(g(n)) iff
there exist c > 0 and n0 > 0,
s.t. f(n) 5 c g(n) for n 6 n0

– f(n) and g(n) are functions
over non-negative integers

Used for worst-case analysis

Master Informatique 																																		24Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Asymptotic Notation, Example
f(n) = 2n2 + 3(n+1), g(n) = 3n2

Values of f(n) = 2n2 + 3(n+1):

2+6, 8+9, 18+12, 32+15

Values of g(n) = 3n2:

 3, 12, 27, 64

From n0 = 4 onward, we have f(n) 5 g(n)

Master Informatique 																																		25Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Asymptotic Notation, Examples
• Simple Rule: We can always drop lower order terms

and constant factors, without changing big Oh:
– 7n + 3 is
– 8n2 log n + 5n2 + n is
– 50 n log n is

• Note:
– 50 n log n is O(n2)
– 50 n log n is O(n100)

but this is less informative than saying
– 50 n log n is O(n log n)

O(n)
O(n2 log n)
O(n log n)

Master Informatique 																																		26Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Asymptotic Notation/2
• The “big-Omega” Ω0Notation

– asymptotic lower bound
– f(n) = Ω(g(n)) iff

there exist c > 0 and n0 > 0,
s.t. c g(n) 5 f(n), for n 6 n0

• Used to describe lower bounds
of algorithmic problems
– E.g., searching in

 a sorted array
with linear search is Ω(n),
with binary search is Ω(log n)

Input Size

R
un

ni
ng

 T
im

e

f -n .
()c g n:

n0

Master Informatique 																																		27Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Asymptotic Notation/3
• The “big-Theta” Θ0Notation

– asymptotically tight bound

– f(n) = Θ(g(n)) if there exists
c1>0, c2>0, and n0>0,
s.t. for n 6 n0
c1 g(n) 5 f(n) 5 c2 g(n)

• f(n) = Θ(g(n)) iff
f(n) = Ο(g(n)) and f(n) = Ω(g(n))

• Note: O(f(n)) is often used
 when Θ(f(n)) is meant

Input Size

R
un

ni
ng

 T
im

e

f -n .

n0

c
2
⋅g- n.

c
1
⋅g -n .

Master Informatique 																																		28Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Asymptotic Notation/4
• Analogy with real numbers

– f(n) = O(g(n)) 4 f 5 g
– f(n) = Ω(g(n)) 4 f 6 g
– f(n) = Θ(g(n)) 4 f 2 g

• Abuse of notation:
f(n) = O(g(n)) actually means

 f(n) 9 O(g(n))

Master Informatique 																																		29Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Exercise: Asymptotic Growth
Order the following functions according to their asymptotic growth.
– 2n + n2

– 3n3 + n2 – 2n3 + 5n – n3

– 20 log2 2n

– 20 log2 n2

– 20 log2 4n

– 20 log2 2n

– 3n

Master Informatique 																																		30Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Comparison of Running Times
Determining the maximal problem size

25192n

2448831n4

42,4265,4777072n2

7,826,087166,6664,09620n log n

9,000,000150,0002,500400n

1 hour1 minute1 secondRunning Time
T(n) in µs

31

Master Informatique 																																		31Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

DSA, Part 2: Overview

• Complexity of algorithms

• Asymptotic analysis

• Special case analysis

• Correctness of algorithms

Master Informatique 																																		32Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Special Case Analysis

• Consider extreme cases and make sure
your solution works in all cases.

• The problem: identify special cases.

• This is related to INPUT and OUTPUT specifications.

Master Informatique 																																		33Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Special Cases

• empty data structure
(array, file, list, …)

• single element data
structure

• completely filled data
structure

• entering a function
• termination of a function

• zero, empty string
• negative number
• border of domain

• start of loop
• end of loop
• first iteration of loop

Master Informatique 																																		34Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Sortedness

The following algorithm checks
whether an array is sorted.

Analyze the algorithm by considering special cases.

INPUT: A [1..n] – an array of in tegers .
OUTPUT: TRUE i f A i s sorted; FALSE otherwise

for i : = 1 to n
 if A [i] 6 A[i+1] then return FALSE
return TRUE

Master Informatique 																																		35Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Sortedness/2

• Start of loop, i=1 è OK
• End of loop, i=n è ERROR (tries to access A[n+1])

INPUT: A [1..n] – an array of in tegers .
OUTPUT: TRUE i f A i s sorted; FALSE otherwise

for i : = 1 to n
 if A [i] 6 A[i+1] then return FALSE
return TRUE

Master Informatique 																																		36Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Sortedness/3

● Start of loop, i=1 OK!
● End of loop, i=n-1 OK!
● A=[1,2,3] First iteration, from i=1 to i=2 OK! !
● A=[1,2,2] ! ERROR (if A[i]=A[i+1] for some i)

INPUT: A [1..n] – an array of in tegers.
OUTPUT: TRUE i f A i s sorted; FALSE otherwise

for i : = 1 to n–1
 if A [i] 6 A[i+1] then return FALSE
return TRUE

Master Informatique 																																		37Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Sortedness/4

• Start of loop, i=1 è OK
• End of loop, i=n-1 è OK
• A=[1,2,3] è First iteration, from i=1 to i=2 è OK
• A=[1,1,1] è OK
• Empty data structure, n=0 è ? (for loop)
• A=[-1,0,1,-3] è OK

INPUT: A [1..n] – an array of in tegers.
OUTPUT: TRUE i f A i s sorted; FALSE otherwise

for i : = 1 to n -1
 if A [i] 3 A[i+1] then return FALSE
return TRUE

Master Informatique 																																		38Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Binary Search, Variant 1

Analyze the following algorithm
by considering special cases.

l := 1; r := n
do
 m := ⌊(l+r)/2⌋
 if A[m] = q then return m
 else if A[m] > q then r := m-1
 else l := m+1
while l < r
return -1

Master Informatique 																																		39Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Binary Search, Variant 1

• Start of loop è OK
• End of loop, l=r è Error! Example: search 3 in [3 5 7]

l := 1; r := n
do
 m := ⌊(l+r)/2⌋
 if A[m] = q then return m
 else if A[m] > q then r := m-1
 else l := m+1
while l < r
return -1

Master Informatique 																																		40Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Binary Search, Variant 1

• Start of loop è OK
• End of loop, l=r è OK
• First iteration è OK
• A=[1,1,1] è OK
• Empty array, n=0 è Error! Tries to access A[0]
• One-element array, n=1 è OK

l := 1; r := n
do
 m := ⌊(l+r)/2⌋
 if A[m] = q then return m
 else if A[m] > q then r := m-1
 else l := m+1
while l <= r
return -1

Master Informatique 																																		41Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Binary Search, Variant 1

• Start of loop è OK
• End of loop, l=r è OK
• First iteration è OK
• A=[1,1,1] è OK
• Empty data structure, n=0 è OK
• One-element data structure, n=1 è OK

l := 1; r := n
if r < l then return -1;
do
 m := ⌊(l+r)/2⌋
 if A[m] = q then return m
 else if A[m] > q then r := m-1
 else l := m+1
while l <= r
return -1

Master Informatique 																																		42Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Binary Search, Variant 2

Analyze the following algorithm
by considering special cases

l := 1; r := n
while l < r do
 m := ⌊(l+r)/2⌋
 if A[m] <= q
 then l := m+1 else r := m
if A[l-1] = q
 then return l-1 else return -1

Master Informatique 																																		43Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Binary Search, Variant 3

Analyze the following algorithm
by considering special cases

l := 1; r := n
while l <= r do
 m := ⌊(l+r)/2⌋
 if A[m] <= q
 then l := m+1 else r := m
if A[l-1] = q
 then return l-1 else return -1

Master Informatique 																																		44Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Insertion Sort, Slight Variant
• Analyze the following algorithm

by considering special cases
• Hint: beware of lazy evaluations

INPUT: A [1..n] – an array of in tegers
OUTPUT: permutation of A s . t .
 A[1] 5 A[2] …5 5 A[n]

for j : = 2 to n do
 key : = A [j] ; i : = j - 1 ;
 while A [i] > key and i > 0 do
 A[i+1] : = A [i] ; i - - ;
 A[i+1] : = key

Master Informatique 																																		45Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Merge
Analyze the following algorithm
by considering special cases.

INPUT: A [1..n 1], B [1..n2] sor ted arrays of
 in tegers, C[1..n1+n2] array

OUTPUT: permutation C of A .B s . t .
 C[1] 5 C[2] 5. . . 5 C[n1+n2]

i := 1 ; j := 1 ;
for k: =1 to n1 + n2 do

if A [i] <= B [j]
then C[k] : = A [i] ; i+ + ;
else C[k] : = B [j] ; j+ + ;

return C;

Master Informatique 																																		46Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Merge/2

INPUT: A [1..n 1], B [1..n2] sor ted arrays of
in tegers, C[1..n1+n2] array
OUTPUT: permutation C of A .B s . t .
 C[1] 5 C[2] 5. . . 5 C[n1+n2]

i := 1 ; j : = 1 ;
for k: = 1 to n1 + n2 do
 if j > n2 or (i <= n1 and A [i]< = B [j])

then C[k] : = A [i] ; i+ + ;
else C[k] : = B [j] ; j+ + ;

return C;

Master Informatique 																																		47Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Merge/3
To analyze the algorithm on the previous slide,
we distinguish 4 cases
– neither A nor B exhausted implies

“A[i] ≤ B[j]” decides
– B exhausted, A not, implies

j > n2, implies A wins
– B not exhausted, A exhausted, implies

j ≤ n2 && i > n, implies B wins
– A, B both exhausted, implies

k > n1+n2, implies algorithm stops

Master Informatique 																																		48Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

DSA, Part 2: Overview

• Complexity of algorithms

• Asymptotic analysis

• Special case analysis

• Correctness of algorithms

Master Informatique 																																		49Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Correctness of Algorithms
• An algorithm is correct if for every legal input,

it terminates and produces the desired output.

• Automatic proof of correctness is not possible
(this is one of the so-called “undecidable problems”)

• There are practical techniques and rigorous formalisms
that help one to reason about the correctness of
(parts of) algorithms.

Master Informatique 																																		50Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Partial and Total Correctness

every legal input Algorithm output

IF this point is reached, THEN this is the output

n Total correctness

every legal input Algorithm output

INDEED this point is reached, AND this is the output

n Partial correctness

Master Informatique 																																		51Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Assertions
• To prove partial correctness we associate a number of

assertions (statements about the state of the execution)
with specific checkpoints in the algorithm.

– E.g., “A[1], …, A[j] form an increasing sequence”

• Preconditions – assertions that must be valid before the
execution of an algorithm or a subroutine (INPUT)

• Postconditions – assertions that must be valid after the
execution of an algorithm or a subroutine (OUTPUT)

Master Informatique 																																		52Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Pre- and Postconditions of
Linear Search
INPUT: A [1..n] – a array of in tegers,
 q – an in te ge r.
OUTPUT: j s . t . A[j] =q. -1 i f /i(15i5n) : A[i]7q

j := 1
while j 5 n and A[j] != q do j++
if j 5 n then return j
 else return -1

How can we be sure that
– whenever the precondition holds,
– also the postcondition holds?

Master Informatique 																																		53Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Loop Invariant in Linear Search

Whenever the beginning of the loop is reached, then

 A[i] != q for all i where 1 5 i 1 j

When the loop stops, there are two cases
– j = n+1, which implies A[i] != q for all i, 1 5 i 1 n+1
– A[j] = q

j := 1
while j 5 n and A[j] != q do j++
if j 5 n then return j
 else return -1

Master Informatique 																																		54Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Loop Invariant in Linear Search

Note: The condition

A[i] != q for all i where 1 5 i 1 j

– holds when the loop is entered for the first time
– continues to hold until we reach the loop

for the last time

j := 1
while j 5 n and A[j] != q do j++
if j 5 n then return j
else return -1

Master Informatique 																																		55Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Loop Invariants
• Invariants: assertions that are valid every time the

beginning of the loop is reached
(many times during the execution of an algorithm)

• We must show three things about loop invariants:
– Initialization: it is true prior to the first iteration.
– Maintenance: if it is true before an iteration,

then it is true after the iteration.
– Termination: when a loop terminates,

the invariant gives a useful property to show the
correctness of the algorithm

Master Informatique 																																		56Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Example: Binary Search/1
• We want to show that

q is not in A
 if -1 is returned.

• Invariant:
/i9[1..l-1]: A[i]<q (ia)
/i9[r+1..n]: A[i]>q (ib)

• Initialization: l = 1, r = n
the invariant holds because
there are no elements to the left of l or to the right of r.
l = 1 yields / i 9 [1..0]: A[i]<q

 this holds because [1..0] is empty
r = n yields / i 9 [n+1..n]: A[i]>q

 this holds because [n+1..n] is empty

 l:= 1; r:= n;
 m:= ⌊(l+r)/2⌋;
 while l <= r and A(m) != q do
 if q < A(m)
 then r:=m-1
 else l:=m+1
 m:=⌊(l+r)/2⌋;
 if l > r
 then return -1
 else return m

Master Informatique 																																		57Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Example: Binary Search/2
• Invariant:

/i9[1..l-1]: A[i]<q (ia)
/i9[r+1..n]: A[i]>q (ib)

• Maintenance: 1 ≤ l, r ≤ n, m = ⌊(l+r)/2⌋
 :We consider two cases

– A[m] != q & q < A[m]: implies r = m-1
A sorted implies /k9[r+1..n]: A[k] > q (ib)

– A[m] != q & A[m] < q: implies l = m+1
A sorted implies /k9[1..l-1]: A[k] < q (ia)

 l:= 1; r:= n;
 m:= ⌊(l+r)/2⌋;
 while l <= r and A(m) != q do
 if q < A(m)
 then r:=m-1
 else l:=m+1
 m := ⌊(l+r)/2⌋;
 if l > r
 then return -1
 else return m

Master Informatique 																																		58Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Example: Binary Search/3
• Invariant:

/i9[1..l-1]: A[i]<q (ia)
/i9[r+1..n]: A[i]>q (ib)

• Termination: 1 ≤ l, r ≤ n, l ≤ r
Two cases:

l := m+1 implies lnew = ⌊(l+r)/2⌋+ 1 > lold
r := m-1 implies rnew = ⌊(l+r)/2⌋ - 1 < rold

• The range gets smaller during each iteration and
the loop will terminate when l ≤ r no longer holds

 l:= 1; r:= n;
 m:= ⌊(l+r)/2⌋;
 while l <= r and A(m) != q do
 if q < A(m)
 then r:=m-1

else l:=m+1
 m := ⌊(l+r)/2⌋;
 if l > r
 then return -1
 else return m

Master Informatique 																																		59Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Example: Insertion Sort/1

Loop invariants:
External “for” loop
Let Aorig denote the array at
the beginning of the for loop:
A[1..j-1] is sorted
A[1..j-1] 9 Aorig[1..j-1]

Internal “while” loop
Let Aorig denote the array at beginning of the while loop:

• A[1..i] = Aorig[1..i]
• A[i+2..j] = Aorig[i+1..j-1]
• A[k] > key for all k in {i+2,...,j}

for j := 2 to n do
 key := A[j]
 i := j-1
 while i>0 and A[i]>key do
 A[i+1] := A[i]
 i--
 A[i+1] := key

Master Informatique 																																		60Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Example: Insertion Sort/2
External for loop:
 (i) A[1...j-1] is sorted
(ii) A[1...j-1] 9 Aorig[1..j-1]
Internal while loop:
– A[1..i] = Aorig[1..i]
– A[i+2..j] = Aorig[i+1..j-1]
– A[k] > key for all k in {i+2,...,j}

Initialization:
External loop: (i), (ii) j = 2: A[1..1] 9 Aorig[1..1] and is trivially sorted
Internal loop: i = j-1:
– A[1...j-1] = Aorig[1..j-1] , since nothing has happend
– A[j+1..j] = Aorig[j..j-1] , since both sides are empty
– A[k] > key holds trivially for all k in the empty set

for j := 2 to n do
 key := A[j]
 i := j-1
 while i>0 and A[i]>key do
 A[i+1] := A[i]
 i--
 A[i+1] := key

Master Informatique 																																		61Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Example: Insertion Sort/3
External for loop:
 (i) A[1..j-1] is sorted
(ii) A[1..j-1] 9 Aorig[1..j-1]
Internal while loop:
– A[1..i] = Aorig[1..i]
– A[i+2..j] = Aorig[i+1..j-1]
– A[k] > key for all k in {i+2,...,j}

 Maintenance internal while loop
Before the decrement “i--”, the following facts hold:
– A[1..i-1] = Aorig[1..i-1] (because nothing in A[1..i-1] has been changed)
– A[i+1..j] = Aorig[i..j-1] (because A[i] has been copied to A[i+1] and

 A[i+2..j] = Aorig[i+1..j-1]
– A[k] > key for all k in {i+1,...,j} (because A[i] has been copied to A[i+1])

After the decrement “i--”, the invariant holds because i-1 is replaced by i.

for j := 2 to n do
 key := A[j]
 i := j-1
 while i>0 and A[i]>key do
 A[i+1] := A[i]
 i--
 A[i+1] := key

Master Informatique 																																		62Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Example: Insertion Sort/4
External for loop:
 (i) A[1..j-1] is sorted
(ii) A[1..j-1] 9 Aorig[1..j-1]
Internal while loop:
– A[1..i] = Aorig[1..i]
– A[i+2..j] = Aorig[i+1..j-1]
– key < A[k] for all k in {i+2,...,j}

 Termination internal while loop
The while loop terminates, since i is decremented in each round.
Termination can be due to two reasons:
i=0: A[2..j] = Aorig[1..j-1] and key < A[k] for all k in {2,...,j} (because of the invariant)
 implies key, A[2..j] is a sorted version of Aorig[1..j]
A[i] 5 key: A[1..i] = Aorig[1..i], A[i+2..j] = Aorig[i+1..j-1], key = Aorig[j]
 implies A[1..i], key, A[i+2..j] is a sorted version of Aorig[1..j]

for j := 2 to n do
 key := A[j]
 i := j-1
 while i>0 and A[i]>key do
 A[i+1] := A[i]
 i--
 A[i+1] := key

Master Informatique 																																		63Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Example: Insertion Sort/5
External for loop:
 (i) A[1..j-1] is sorted
(ii) A[1..j-1] 9 Aorig[1..j-1]
Internal while loop:
– A[1..i] = Aorig[1..i]
– A[i+2..j] = Aorig[i+1..j-1]
– key < A[k] for all k in {i+2,...,j}

 Maintenance of external for loop
When the internal while loop terminates, we have (see previous slide):
 A[1..i], key, A[i+2..j] is a sorted version of Aorig[1..j]
After
– assigning key to A[i+1] and
– Incrementing j,

the invariant of the external loop holds again.

for j := 2 to n do
 key := A[j]
 i := j-1
 while i>0 and A[i]>key do
 A[i+1] := A[i]
 i--
 A[i+1] := key

Master Informatique 																																		64Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Example: Insertion Sort/6
External for loop:
 (i) A[1..j-1] is sorted
(ii) A[1..j-1] 9 Aorig[1..j-1]
Internal while loop:
– A[1..i] = Aorig[1..i]
– A[i+2..j] = Aorig[i+1..j-1]
– key < A[k] for all k in {i+2,...,j}

 Termination of external for loop
The for loop terminates because j is incremented in each round.
Upon termination, j = n+1 holds.
In this situation, the loop invariant of the for loop says:

A[1..n] is sorted and contains the same values as Aorig[1..n]

That is, A has been sorted.

for j := 2 to n do
 key := A[j]
 i := j-1
 while i>0 and A[i]>key do
 A[i+1] := A[i]
 i--
 A[i+1] := key

Master Informatique 																																		65Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Example: Bubble Sort
INPUT: A[1..n] – an array of integers
OUTPUT: permutation of A s . t . A[1] ≤ A[2]≤ … ≤ A[n]

for j : = 1 to n -1 do
 for i : = n downto j + 1 do
 if A [i-1] > A [i] then
 s w a p (A ,i-1,i)

• What is a good loop invariant for the outer loop?
(i.e., a property that always holds at the end of line 1)

• … and what is a good loop invariant for the inner loop?
(i.e., a property that always holds at the end of line 2)

Master Informatique 																																		66Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Example: Bubble Sort

A
1 nj

1 3 42 5 7 9 8 6

 Strategy
• Start from the back

and compare pairs
of adjacent elements.

• Swap the elements
if the larger comes
before the smaller.

• In each step
the smallest element
of the unsorted part
is moved to the beginning
of the unsorted part and the
sorted part grows by one.

44 55 12 42 94 18 06 67
06 44 55 12 42 94 18 67
06 12 44 55 18 42 94 67
06 12 18 44 55 42 67 94
06 12 18 42 44 55 67 94
06 12 18 42 44 55 67 94
06 12 18 42 44 55 67 94
06 12 18 42 44 55 67 94

Master Informatique 																																		67Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Loop Invariants for Bubble Sort
• Outer loop: “A[1..j-1] is sorted and contains

 the j-1 smallest values of the array”
Note: loop finishes with j = n
In the end:
 A[1..n-1] is sorted and minimum,
 hence, A[1..n] is sorted

• Inner loop: “A[i] is the minimum in A[i..n]”
Note: loop finishes with i = j
In the end:

 A[j] is the minimum in A[j..n],
 which implies the outer loop invariant

Master Informatique 																																		68Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Example: Selection Sort

• What is a good loop invariant for the outer loop?
• … and what is a good loop invariant for the inner loop?

INPUT: A[1..n] – an array of integers
OUTPUT: a permutation of A such that A[1] ≤ A[2] ≤ … ≤A[n]

for j : = 1 to n-1 do
 min : = A [j] ; minpos : = j
 for i : = j + 1 to n do
 if A [i] < min then min : = A [i] ; minpos : = i ;
 A[minpos] : = A [j] ; A [j] : = min

Master Informatique 																																		69Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Example: Selection Sort

A
1 nj

1 3 42 5 7 8 9 6

i

Strategy
• Start empty handed.
• Enlarge the sorted part

by swapping the first element
of the unsorted part
with the smallest element
of the unsorted part.

• Continue until the unsorted part
consists of one element only.

44 55 12 42 94 18 06 67
06 55 12 42 94 18 44 67
06 12 55 42 94 18 44 67
06 12 18 42 94 55 44 67
06 12 18 42 94 55 44 67
06 12 18 42 44 55 94 67
06 12 18 42 44 55 94 67
06 12 18 42 44 55 67 94

Master Informatique 																																		70Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Loop Invariants for Selection Sort
• Outer loop: “A[1..j-1] sorted and contains

 the j-1 smallest values of the array”
Note: loop finishes with j = n
In the end: A[1..n-1] is sorted and minimum,
 hence, A[1..n] is sorted

• Inner loop: “min holds the minimum of A[j..i-1] and
 minpos holds the position of the minimum”
Note: loop finishes with i = n+1
In the end: min holds the minimum of A[j..n]

 then, swap(minpos,j) puts min into j,
 which implies the outer loop invariant

Master Informatique 																																		71Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Exercise
• Apply the same approach that we used for insertion sort

to prove the correctness of bubble sort and
selection sort.

Master Informatique 																																		72Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Math Refresher
● Arithmetic progression

● Geometric progression (for a number a ≠ 1)

∑i=0

n
a i=1,a2,...,an=-1−an,1./-1−a.

∑i= 0

n
i=0,1,...,n=n -n,1./2

Master Informatique 																																		73Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Induction Principle
We want to show that property P is true
for all integers n 6 n0.

Basis: prove that P is true for n0.

Inductive step: prove that if P is true for all k
 such that n0 5 k 5 n – 1 then P is also true for n.

Exercise: Prove that every Fibonacci number
 of the form fib(3n) is even

Master Informatique 																																		74Data Structures and Algorithms

Part	2 Complexity	and	Correctness	of	Algorithms

Summary
● Algorithmic complexity
• Asymptotic analysis

– Big O and Theta notation
– Growth of functions and asymptotic notation

• Correctness of algorithms
– Pre/Post conditions
– Invariants

• Special case analysis

