
Master Informatique 																																		1 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Data Structures and Algorithms

Werner Nutt

Master Informatique 																																		2 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Acknowledgments
•  The course follows the book “Introduction to Algorithms”,

by Cormen, Leiserson, Rivest and Stein, MIT Press
[CLRST]. Many examples displayed on these slides are
taken from their book.

•  These slides are based on those developed by
Michael Böhlen for his course.

 (See http://www.inf.unibz.it/dis/teaching/DSA/)

•  The slides also include a number of additions made by
Roberto Sebastiani and Kurt Ranalter when they taught
later editions of this course

 (See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)

Master Informatique 																																		3 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

DSA, Chapter 1: Overview

•  Introduction, syllabus, organisation

•  Algorithms

•  Recursion (principle, trace, factorial, Fibonacci)

•  Sorting (bubble, insertion, selection)

Master Informatique 																																		4 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

DSA, Chapter 1:

•  Introduction, syllabus, organisation

•  Algorithms

•  Recursion (principle, trace, factorial, Fibonacci)

•  Sorting (bubble, insertion, selection)

Master Informatique 																																		5 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Learning Outcomes
The main things we will learn in this course:

•  To distinguish between a problem and
 an algorithm that solves it

•  To get to know a toolbox of classical algorithms

•  To think algorithmically and
 get the spirit of how algorithms are designed

•  To learn a number of algorithm design techniques
 (such as divide-and-conquer)

•  To analyze (in a precise and formal way)
 the efficiency and the correctness of algorithms.

Master Informatique 																																		6 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Syllabus

1.  Introduction, recursion (chap 1 in CLRS)
2.  Correctness and complexity of algorithms (2, 3)
3.  Divide and conquer, recurrences (4)
4.  Heapsort, Quicksort (6, 7)
5.  Dynamic data structures, abstract data types (10)
6.  Binary search trees, red-black trees (12, 13)
7.  Hash tables (11)
8.  Dynamic programming (15)
9.  Graphs: Principles and graph traversal (22)
10. Minimum spanning tree and shortest path (23, 24)

Master Informatique 																																		7 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Literature

Cormen, Leiserson, Rivest
and Stein (CLRS),
Introduction to Algorithms,
Second Edition, MIT Press and
McGraw-Hill, 2001
and
Third Edition, MIT Press, 2009

(See http://mitpress.mit.edu/algorithms/)

Course is based on this book

Master Informatique 																																		8 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Other Literature
Kurt Mehlhorn and Peter Sanders
Algorithms and Data Structures - The Basic Toolbox

Offers alternate presentation of topics of the course

Free download from
 http://www.mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Sanders-Toolbox.pdf

Master Informatique 																																		9 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Course Organization
•  Lectures: Wed 10:45-12:45, Fri 8:30-10:30

Office hours: Wed 14:00-16:00 (but let me know if you want to come)

•  Labs (starting next week): Tue 16:00-18:00
•  Teaching Assistants

-  Radityo Eko Prasoyo, RPrasojo@unibz.it
-  Rafael Penaloza, Rafael.Penaloza@unibz.it
-  Guohui Xiao, guohui.xiao@unibz.it

•  Home page:
 http://www.inf.unibz.it/~nutt/Teaching/DSA1516/

Master Informatique 																																		10 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Assignments
The assignments are a crucial part of the course
•  Each week an assignment has to be solved
•  The schedule for the publication and the handing in of

the assignments will be announced at the next lecture.
•  A number of assignments include programming tasks.

It is strongly recommended that you implement and run
all programming exercises.

•  Assignments will be marked. The assignment mark will
count towards the course mark.

•  Any attempt at plagiarism (copying from the web or
copying from other students) leads to a 0 mark
for all assignments.

Master Informatique 																																		11 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Assignments, Midterm Exam,
Final Exam, and Course Mark
•  There will be

–  one written exam at the end of the course
–  one midterm exam around the middle of the course
–  assignments

•  To pass the course, one has to pass the written exam.
•  Students who do not submit exercises and do not take

part in the midterm (or fail the midterm) will be marked
on the final exam alone.

•  For students who submit all assignments, and take part
in the midterm, the final mark will be a weighted average
 40% exam mark + 20% midterm
 + 40% assignment mark

Master Informatique 																																		12 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Assignments, Midterm Exam,
Final Exam, and Course Mark
•  If students submit fewer assignments, or do not take part

in the midterm, the percentage will be lower.
•  Assignments for which the mark is lower than the mark

of the written exam will not be considered.
•  Similarly, the midterm will not be considered if the mark

is lower than the mark of the final exam.
•  The midterm and assignment marks apply to three exam

sessions.

Master Informatique 																																		13 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Organisation of Labs
•  You will attend always the lab of the same teaching

assistant (TA) during the course
•  The TA will mark your assignments and be your first

contact person for questions on the assignments
•  To help us organize the labs, send an email to

Rafael.Penaloza@unibz.it containing a group of students
that would like to attend the same lab

•  One mail per group is enough
•  The mail should contain for each student of the group

–  name
–  email address
–  student number

Master Informatique 																																		14 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

General Remarks
•  Algorithms are first designed on paper

 … and later keyed in on the computer.

•  The most important thing is to be simple and precise .

•  During lectures:
–  Interaction is welcome; ask questions

 (I will ask you anyway J)
–  Additional explanations and examples if desired
–  Speed up/slow down the progress

Master Informatique 																																		15 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

DSA, Chapter 1:

•  Introduction, syllabus, organisation

•  Algorithms

•  Recursion (principle, trace, factorial, Fibonacci)

•  Sorting (bubble, insertion, selection)

Master Informatique 																																		16 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

What are Algorithms About?
There are problems we solve in everyday life
•  Travel from Bolzano to Berlin
•  Cook Spaghetti alla Bolognese (I know, not in Italy,…)

•  Register for a Bachelor thesis at FUB

For all these problems, there are
•  instructions
•  recipes
•  procedures,

which describe a complex operation in terms of
•  elementary operations (“beat well …”)

•  control structures and conditions (“… until fluffy”)

Master Informatique 																																		17 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Algorithms
Problems involving numbers, strings, mathematical objects:

•  for two numbers, determine their sum, product, …
•  for two numbers, compute their greatest common divisor
•  for a sequence of strings,

 find an alphabetically sorted permutation of the sequence
•  for two arithmetic expressions, find out if they are equivalent
•  for a program in Java,

 create an equivalent program in byte code
•  on a map, find for a given house the closest bus stop

We call instructions, recipes, for such problems algorithms

 What have algorithms in common with recipes?
 How are they different?

Master Informatique 																																		18 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

History
•  First algorithm: Euclidean Algorithm,

 greatest common divisor, 400-300 B.C.

•  Name: Persian mathematician Mohammed al-Khowarizmi,
in Latin became “Algorismus”
كتاب الجمع و التفريق بحساب الهند

 Kitāb al-Dschamʿ wa-l-tafrīq bi-ḥisāb al-Hind =
 = Book on connecting and taking apart in the calculation of India

•  19th century
–  Charles Babbage: Difference and Analytical Engine

•  20th century
–  Alan Turing, Alonzo Church: formal models computation
–  John von Neumann: architecture of modern computers

Master Informatique 																																		19 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Data Structures, Algorithms, and Programs

•  Data structure
–  Organization of data to solve the problem at hand

•  Algorithm
–  Outline, the essence of a computational procedure,

step-by-step instructions

•  Program
–  implementation of an algorithm

in some programming language

Master Informatique 																																		20 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Overall Picture
Using a computer to help
solve problems:
•  Precisely specifying

the problem
•  Designing programs

–  architecture
–  algorithms

•  Writing programs
•  Verifying (testing)

programs

Data Structure and
Algorithm Design Goals

Implementation Goals

Correctness Efficiency

Robustness Reusability

Adaptability

Master Informatique 																																		21 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

This course is not about:

•  Programming languages

•  Computer architecture

•  Software architecture

•  SW design and implementation principles

 We will only touch upon
 the theory of complexity
 and computability.

Master Informatique 																																		22 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Algorithmic Problem

There is an infinite number of possible input instances
 satisfying the specification.

For example: An array of distinct integer numbers:

 [-909, -1, -20, 908, 1000000000, 100000]

Specification
of output as
a function
of input

Specification
of input

?

Master Informatique 																																		23 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Question from a Google Interview
You are given an array of distinct numbers.
You need to return an index to a “local minimum” element,
which is defined as an element that is smaller than both its
adjacent elements.
In the case of the array edges, the condition is reduced to
one adjacent element.
If there are multiple “local minima”,

 returning any one of them is fine.

Master Informatique 																																		24 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Question from a Google Interview/2
You are given an unsorted sequence of integers A.
Find the longest subsequence B such that
elements of this subsequence are strictly increasing numbers.
Elements in the subsequence B must appear
in the same relative order as in the sequence A.

Example:
input: A = [-1, 2, 100, 100, 101, 3, 4, 5, -7]
output: B = [-1, 2, 3, 4, 5]

Master Informatique 																																		25 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Question from a Google Interview/3

You have a sorted array containing
the age of every person on Earth

 [0, 0, 0, 0, ..., 1, 1, ..., 28, 28, ..., 110, ...].

Find out how many people have each age.

Master Informatique 																																		26 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Question from a Google Interview/4
You are given a text file that has list of dependencies between (any)
two projects in a source code repository.
Write an algorithm to determine the build order, i.e.,
which project needs to be built first, followed by which project,
based on the dependencies.
You get a bonus point, if you can detect any circular dependencies
and throw an exception if found.

Example: ProjectDependencies.txt
a àb (means “a depends on b”, so b needs to be built first and then a)
b àc
b àd
c àd

Then the build order can be d, c, b, a, in that order.

Master Informatique 																																		27 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Algorithmic Solution

•  Algorithm describes actions on the input instance
•  There may be many correct algorithms

for the same algorithmic problem.

Output related
to the input
as required

Input instance
adhering to
specification

Algorithm

Master Informatique 																																		28 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Definition
An algorithm is a sequence of unambiguous instructions
for solving a problem, i.e.,
•  for obtaining a required output
•  for any legitimate input
in a finite amount of time.

è This presumes a mechanism to execute the algorithm

Properties of algorithms:
•  Termination, Correctness, (Non-)Determinism,

 RunningTime, …

Master Informatique 																																		29 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

How to Develop an Algorithm
•  Precisely define the problem.

Precisely specify the input and output.
Consider all cases.

•  Come up with a simple (= abstract ?) plan
to solve the problem at hand.
–  The plan is independent of a (programming) language
–  The precise problem specification influences the plan.

•  Turn the plan into an implementation
–  The problem representation (data structure)

influences the implementation

Master Informatique 																																		30 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Example 1: Searching

INPUT

• A - (un)sorted sequence/array
 of n numbers, (n > 0)

• q - a single number

a 1 , a 2 , a 3 ,….,a n ; q j

OUTPUT

• index of number q in
 sequence/array A, or -1

2 5 6 10 11; 5 2

2 5 6 10 11; 9 -1

Master Informatique 																																		31 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Searching/2, search1

•  The code is written in pseudo-code and
INPUT and OUTPUT of the algorithm are specified.

•  The algorithm uses a brute-force technique,
i.e., scans the input sequentially.

search1
INPUT: A[1..n] (un)sorted array of integers, q an integer.
OUTPUT: index j such that A[j]=q or -1 if A[j] ≠ q for all j (1 ≤ j ≤ n)

j := 1
while j ≤ n and A[j] ≠ q do
 j++
if j ≤ n
 then return j
 else return -1

Master Informatique 																																		32 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Preconditions, Postconditions
Precondition:
•  what does the algorithm get as input?

Postcondition:
•  what does the algorithm produce as output?
•  … how does this relate to the input?

Make sure you have considered the special cases:
•  empty set, number 0, empty reference NULL, …

Master Informatique 																																		33 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Pseudo-code
Like Java, Pascal, C, or any other imperative language

•  Control structures:

 (if then else, while, and for loops)

•  Assignment: :=

•  Array element access: A[i]

•  Access to element of composite type (record or object):
 A.b

 CLRS uses b[A]

Master Informatique 																																		34 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Control Structures in Pseudo-code: Examples

•  for-to:
 for i := 1 to n do
 A[i] := A[i] + 1

•  for-downto:

 for i := n downto 1 do
 A[i] := A[i] + 2

•  while:
 while A[i] > 0 do
 A[i] := A[i] - i

•  if-then-else:
 if A[i] > 0
 then pos := true
 else pos := false

Master Informatique 																																		35 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Searching, Java Solution
import java.io.*;

class search {
 static final int n = 5;
 static int j, q;
 static int a[] = { 11, 1, 4, -3, 22 };

 public static void main(String args[]) {
 j = 0; q = 22;
 while (j < n && a[j] != q) { j++; }
 if (j < n) { System.out.println(j); }
 else { System.out.println(-1); }
 }
}

Master Informatique 																																		36 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Searching, Java Solution
import java.io.*;

class search {
 static final int n = 5;
 static int q = 22;
 static int a[] = { 11, 1, 4, -3, 22 };

 public static void main(String args[]) {
 int j = 0;
 while (j < n && a[j] != q) { j++; }
 if (j < n) { System.out.println(j); }
 else { System.out.println(-1); }
 }
}

Master Informatique 																																		37 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Another idea:
 Run through the array
and set a pointer if the value is found.

 Does it work?

Searching/3, search2

search2
INPUT: A[1..n] (un)sorted array of integers, q an integer.
OUTPUT: index j such that A[j]=q or -1 if A[j] ≠ q for all j (1 ≤ j ≤ n)

ptr := -1;
for j := 1 to n do
 if a[j] = q then ptr := j
return ptr;

Master Informatique 																																		38 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

search1 vs search2
Are the solutions equivalent?

Can one construct an example such that, say,
•  search1 returns 3
•  search2 returns 7 ?

But both solutions satisfy the specification (or don’t they?)

Master Informatique 																																		39 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Searching/4, search3
A third idea:

 Run through the array and
return the index of the value in the array.

search3
INPUT: A[1..n] (un)sorted array of integers, q an integer.
OUTPUT: index j such that A[j]=q or -1 if A[j] ≠ q for all j (1 ≤ j ≤ n)

for j := 1 to n do
 if a[j] = q then return j
return -1

Master Informatique 																																		40 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Comparison of Solutions
Metaphor: shopping behavior when buying a beer:

•  search1: scan products;
stop as soon as a beer is found and go to the exit.

•  search2: scan products until you get to the exit;
if during the process you find a beer,
put it into the basket
(instead of the previous one, if any).

•  search3: scan products;
stop as soon as a beer is found
and exit through next window.

Master Informatique 																																		41 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Comparison of Solutions/2

•  search1 and search3 return the same result
(index of the first occurrence of the search value)

•  search2 returns the index of the last occurrence
of the search value

•  search3 does not finish the loop
 (as a general rule, you better avoid this)

Master Informatique 																																		42 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Beware: Array Indexes in Java/C/C++

•  In pseudo-code, array indexes range from 1 to length
•  In Java/C/C++, array indexes range from 0 to length-1
•  Examples:

–  Pseudo-code
 for j := 1 to n do
 Java:
 for (j=0; j < a.length; j++) { …

–  Pseudo-code
 for j := n downto 2 do

 Java:
 for (j=a.length-1; j >= 1; j--) { …

Master Informatique 																																		43 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Suggested Exercises

•  Implement the three variants of search
 (with input and output of arrays)

–  Create random arrays for different lengths
–  Compare the results
–  Add a counter for the number of cycles and return it,

 compare the result

•  Implement them to scan the array in reverse order

Master Informatique 																																		44 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

DSA, Chapter 1:

•  Introduction, syllabus, organisation

•  Algorithms

•  Recursion (principle, trace, factorial, Fibonacci)

•  Sorting (bubble, insertion, selection)

Master Informatique 																																		45 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Recursion

An object is recursive if

•  a part of the object refers to the entire object, or

•  one part refers to another part and vice versa

 (mutual recursion)

Master Informatique 																																		46 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Master Informatique 																																		47 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Source: http://bluehawk.monmouth.edu/~rclayton/web-pages/s11-503/recursion.jpg

Master Informatique 																																		48 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Recursion/2
•  A recursive definition: a concept is defined by

referring to itself.

E.g., arithmetical expressions (like (3 * 7) - (9 / 3)):

 EXPR := VALUE | (EXPR OPERATOR EXPR)

•  A recursive procedure: a procedure that calls itself

 Classical example: factorial, that is n! = 1 * 2 * 3 *...* n

n! = n * (n-1)!
 … or is there something missing?

Master Informatique 																																		49 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

The Factorial Function
Pseudocode of factorial:

This is a recursive procedure. A recursive procedure has
•  a termination condition

(determines when and how to stop the recursion).
•  one (or more) recursive calls.

fac1
INPUT: n – a natural number.
OUTPUT: n! (factorial of n)

fac1(n)
 if n < 2 then return 1
 else return n * fac1(n-1)

Master Informatique 																																		50 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Tracing the Execution

fac(3)

fac(2)
 2 * fac(1)

1

2

6

3 * fac(2)

fac(1)
 1

Master Informatique 																																		51 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Bookkeeping
The computer maintains an activation stack
for active procedure calls (à compiler construction).
Example for fac(5). The stack is built up.

fac(5) =

fac(1) = 1

fac(2) = 2*fac(1)

fac(3) = 3*fac(2)

fac(4) = 4*fac(3)

fac(5) = 5*fac(4)

fac(2) = 2*fac(1)

fac(3) = 3*fac(2)

fac(4) = 4*fac(3)

fac(5) = 5*fac(4)
fac(3) = 3*fac(2)

fac(4) = 4*fac(3)

fac(5) = 5*fac(4)

fac(4) = 4*fac(3)

fac(5) = 5*fac(4)

fac(5) = 5*fac(4)

Master Informatique 																																		52 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Bookkeeping/2
Then the activation stack is reduced

 fac(1) = 1

fac(2) = 2 * fac(1)

fac(3) = 3 * fac(2)

fac(4) = 4 * fac(3)

fac(5) = 5 * fac(4)

fac(2) = 2

fac(3) = 3 * fac(2)

fac(4) = 4 * fac(3)

fac(5) = 5 * fac(4)

fac(3) = 6

fac(4) = 4 * fac(3)

fac(5) = 5 * fac(4)

fac(4) = 24

fac(5) = 5 * fac(4)

fac(5) = 120

Master Informatique 																																		53 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Variants of Factorial
fac2
INPUT: n – a natural number.
OUTPUT: n! (factorial of n)

fac2(n)
 if n = 0 then return 1
 return n * fac2(n-1)

fac3
INPUT: n – a natural number.
OUTPUT: n! (factorial of n)

fac3(n)
 if n = 0 then return 1
 return n * (n-1) * fac3(n-2)

Master Informatique 																																		54 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Analysis of the Variants
fac2 is correct
•  The return statement in the if clause terminates the

function and, thus, the entire recursion.

fac3 is incorrect
•  Infinite recursion.

The termination condition is never reached if n is odd:

 fact(3)
 = 3*2*fact(1)
 = 3*2*1*0*fact(-1)
 = ...

Master Informatique 																																		55 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Variants of Factorial/2
fac4
INPUT: n – a natural number.
OUTPUT: n! (factorial of n)

fac4(n)
 if n <= 1 then return 1
 return n*(n-1)*fac4(n-2)

fac5
INPUT: n – a natural number.
OUTPUT: n! (factorial of n)

fac5(n)
 return n * fac5(n-1)
 if n <= 1 then return 1

Master Informatique 																																		56 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Analysis of the Variants/2
fac4 is correct
•  The return statement in the if clause terminates the

function and, thus, the entire recursion.

fac5 is incorrect
•  Infinite recursion.

The termination condition is never reached.

Master Informatique 																																		57 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Counting Rabbits
Someone placed a pair of rabbits
in a certain place,
enclosed on all sides by a wall,
so as to find out
how many pairs of rabbits
will be born there in the course of one year,
it being assumed
that every month
a pair of rabbits produces another pair,
and that rabbits begin to bear
young two months after their own birth.

Leonardo di Pisa (“Fibonacci”),
Liber abacci, 1202

Master Informatique 																																		58 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Counting Rabbits/2

Source: http://www.jimloy.com/algebra/fibo.htm

Master Informatique 																																		59 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Fibonacci Numbers
Definition
•  fib(0) = 1
•  fib(1) = 1
•  fib(n) = fib(n-1) + fib(n-2), n>1

Numbers in the series:
 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Master Informatique 																																		60 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

A procedure with multiple recursive calls

Fibonacci Procedure

fib
INPUT: n – a natural number greater or equal than 0.
OUTPUT: fib(n), the nth Fibonacci number.

fib(n)
 if n ≤ 1 then return 1
 else return fib(n-1) + fib(n-2)

Master Informatique 																																		61 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Fibonacci Procedure/2

public class fibclassic {

 static int fib(int n) {
 if (n <= 1) {return 1;}
 else {return fib(n - 1) + fib(n - 2);}
 }

 public static void main(String args[]) {
 System.out.println("Fibonacci of 5 is "
 + fib(5));
 }
}

Master Informatique 																																		62 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Tracing fib(3)

fib(3)
 fib(2) + fib(1)

fib(1)
 1

fib(2)
 fib(1) + fib(0)

1
1

3

fib(1)
 1

fib(0)
 1

2
1

Master Informatique 																																		63 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Bookkeeping

fib(1) = 1

fib(2) = fib(1) + fib(0)

fib(3) = fib(2) + fib(1)

fib(1) = 1

fib(2) = fib(1) + fib(0)

fib(3) = fib(2) + fib(1)

fib(2) = fib(1) + fib(0)

fib(3) = fib(2) + fib(1)

fib(3) = fib(2) + fib(1) fib(2) = 1 + fib(0)

fib(3) = fib(2) + fib(1)

fib(0) = 1

fib(2) = 1+ fib(0)

fib(3) = fib(2) + fib(1)

fib(0) = 1

fib(2) = 1 + fib(0)

fib(3) = fib(2) + fib(1)

fib(2) = 1 + 1

fib(3) = fib(2) + fib(1)

fib(1) = 1

fib(3) = 2 + fib(1)

fib(2) = 1 + 1

fib(3) = fib(2) + fib(1)

fib(3) = 2 + fib(1)

fib(1) = 1

fib(3) = 2 + fib(1)

Master Informatique 																																		64 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Bookkeeping

fib(1) = 1

fib(2) = fib(1) + fib(0)

fib(3) = fib(2) + fib(1)

fib(1) = 1

fib(2) = fib(1) + fib(0)

fib(3) = fib(2) + fib(1)

fib(2) = fib(1) + fib(0)

fib(3) = fib(2) + fib(1)

fib(3) = fib(2) + fib(1) fib(2) = 1 + fib(0)

fib(3) = fib(2) + fib(1)

fib(0) = 1

fib(2) = 1+ fib(0)

fib(3) = fib(2) + fib(1)

fib(0) = 1

fib(2) = 1 + fib(0)

fib(3) = fib(2) + fib(1)

fib(2) = 1 + 1

fib(3) = fib(2) + fib(1)

fib(1) = 1

fib(3) = 2 + fib(1)

fib(2) = 1 + 1

fib(3) = fib(2) + fib(1)

fib(3) = 2 + fib(1)

fib(1) = 1

fib(3) = 2 + fib(1)

Master Informatique 																																		65 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Questions
•  What is the maximal height of the recursion stack during

the computation of fib(n)?
•  How many recursive calls are made to compute fib(n)?
•  What does the tree of recursive calls (recursion tree)

look like?
•  Can we derive a lower bound for the number of calls

from that?
•  Can there be a procedure for fib with fewer operations?
•  How is the size of the result fib(n) related to the size of

the input n?

Master Informatique 																																		66 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Saving Intermediate Values of fib(n)
fib
INPUT: n – a natural number greater or equal than 0.
OUTPUT: fib(n), the nth Fibonacci number.

fib(n)
 if n ≤ 1 then return 1
 int[] fibVal = new int[n+1]
 // let’s assume in this case that the array
 // boundaries start with 0 :-(
 fibVal[0] := 1; fibVal[1] := 1;
 for j=2 to n do
 fibVal[j] := fibVal[j-1]+fibVal[j-2]
 return fibVal[n];

… but we only need the last two values of fib to compute the next one

Master Informatique 																																		67 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Iterative Computation of fib(n)

fib
INPUT: n – a natural number greater or equal than 0.
OUTPUT: fib(n), the nth Fibonacci number.

fib(n)
 if n ≤ 1 then return 1
 int f, f1, f2;
 f1 := 1; f2 := 1;
 for j=2 to n do
 f := f1+f2
 f2 := f1
 f1 := f
 return f;

Master Informatique 																																		68 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Mutual Recursion

Source: http://britton.disted.camosun.bc.ca/escher/drawing_hands.jpg

Master Informatique 																																		69 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Mutual Recursion Example

•  Problem: Determine whether a natural number is even

•  Definition of even:
–  0 is even
–  n is even if n - 1 is odd
–  n is odd if n - 1 is even

Master Informatique 																																		70 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Implementation of even

How can we determine whether n is odd?

even
INPUT: n – a natural number.
OUTPUT: true if n is even; false otherwise

even(n)
 if n = 0 then return TRUE
 else return odd(n-1)

odd(n)
 if n = 0 then return FALSE
 return even(n-1)

Master Informatique 																																		71 Data Structures and Algorithms

Part	1	 Introduc-on,	Algorithms,	Recursion,	Sor-ng	

Is Recursion Necessary?
•  Theory: You can always resort to iteration and

 explicitly maintain a recursion stack.

•  Practice: Recursion is elegant and in some cases
 the best solution by far.

•  In the previous examples recursion was never
appropriate since there exist simple iterative solutions.

•  Recursion is more expensive than corresponding
iterative solutions since bookkeeping is necessary.

Master Informatique 																																		1Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Data Structures and Algorithms

 Chapter 1.4

Werner Nutt

Master Informatique 																																		2Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

DSA, Chapter 1:

• Introduction, syllabus, organisation

• Algorithms

• Recursion (principle, trace, factorial, Fibonacci)

• Sorting (insertion, selection, bubble)

Master Informatique 																																		3Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Sorting
• Sorting is a classical and important algorithmic problem.

– For which operations is sorting needed?
– Which systems implement sorting?

• We look at sorting arrays
(in contrast to files, which restrict random access)

• A key constraint are the restrictions on the space:
in-place sorting algorithms (no extra RAM).

• The run-time comparison is based on
– the number of comparisons (C) and
– the number of movements (M).

Master Informatique 																																		4Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Sorting
• Simple sorting methods use roughly n * n comparisons

– Insertion sort
– Selection sort
– Bubble sort

• Fast sorting methods use roughly n * log n comparisons
– Merge sort
– Heap sort
– Quicksort

 What’s the point of studying those simple methods?

Master Informatique 																																		5Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Example 2: Sorting

Sort

INPUT
sequence of n numbers

a1, a 2, a 3,….,a n
b1, b2, b3,…., b n

OUTPUT
a permutation of the
input sequence of numbers

2 5 4 10 7

2 4 5 7 10

Correctness (requirements for the output)
For any given input the algorithm halts with the output:

• b1 b2 ≤ b3 ≤ …. ≤ bn

• b1, b2, b3, …., bn is a permutation of a1, a2, a3,….,an

 ≤

Master Informatique 																																		6Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Insertion Sort

44 55 12 42 94 18 06 67
44 55 12 42 94 18 06 67
12 44 55 42 94 18 06 67
12 42 44 55 94 18 06 67
12 42 44 55 94 18 06 67
12 18 42 44 55 94 06 67
06 12 18 42 44 55 94 67
06 12 18 42 44 55 67 94

Strategy
• Start with one sorted card.
• Insert an unsorted card

at the correct position
in the sorted part.

• Continue until all unsorted
cards are inserted/sorted.

3 4 6 8 9 7 2 5 1

1 nj
i

A

Master Informatique 																																		7Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Insertion Sort: Principles
• Idea: stepwise, increase sorted part.

Initially, A[1..1] is sorted
• Control structure: increase stepwise from left to right

=> iteration
• Insertion into sorted part: check until position is found

=> while-loop
Number to be inserted: key:= A[j]
Move sorted part to right, until correct position found

Master Informatique 																																		8Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

The number of comparisons during the jth iteration is

– at least 1: Cmin = =

– at most j-1: Cmax = =

Insertion Sort/2
INPUT: A [1..n] – an array of in tegers
OUTPUT: permutation of A s . t . A[1] ≤ A[2]≤ . . . ≤ A[n]

for j := 2 to n do // A[1..j-1] sorted
 key := A[j]; i := j-1;
 while i > 0 and A[i] > key do
 A[i+1] := A[i]; i--;
 A[i+1] := key

∑ j=2

n
1

∑ j=2

n
j−1

Master Informatique 																																		9Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Insertion Sort/2
INPUT: A [1..n] – an array of in tegers
OUTPUT: permutation of A s . t . A[1] ≤ A[2]≤ . . . ≤ A[n]

for j := 2 to n do // A[1..j-1] sorted
 key := A[j]; i := j-1;
 while i > 0 and A[i] > key do
 A[i+1] := A[i]; i--;
 A[i+1] := key

The number of comparisons during the jth iteration is

– at least 1: Cmin = = n - 1

– at most j-1: Cmax = = (n*n - n)/2

∑ j=2

n
1

∑ j=2

n
j−1

Master Informatique 																																		10Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

• The number of comparisons during the jth iteration is:

– j/2 on average: Cavg = = (n*n + n – 2)/4

• The number of movements Mi is (Ci-1)+2 = Ci+1:

– Mmin = = 2*(n-1),

– Mavg = = (n*n + 5n - 6)/4

– Mmax = = (n*n +n - 2)/2

Insertion Sort/3

∑ j=2

n
j /2

∑ j=2

n
j

∑j=2

n
j /2%1

∑j=2

n
2

Master Informatique 																																		11Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Ideas of Insertion Sort
• Start with something that is a trivial partial solution

– what is the initial (trivial) partial solution?
– what could be another trivial partial solution?

• Stepwise extend each partial solution to a bigger partial
solution

… until it is full solution
– in which way are the results of each (outer) iteration

partial solutions?

Master Informatique 																																		12Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Loop Invariants
• Which property (in terms of A and j) is true

whenever the execution reaches the for-loop?
• Why is it true initially?
• Why does it continue to be true later on?
• What does this property mean when the for-loop is

reached the last time?

Master Informatique 																																		13Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Selection Sort

A
1 nj

1 3 42 5 7 8 9 6

i

Strategy
• Start empty handed.
• Enlarge the sorted part by swapping

the least element of the unsorted part
with the first element of the unsorted
part.

• Continue until the unsorted part
consists of one element only.

44 55 12 42 94 18 06 67
06 55 12 42 94 18 44 67
06 12 55 42 94 18 44 67
06 12 18 42 94 55 44 67
06 12 18 42 94 55 44 67
06 12 18 42 44 55 94 67
06 12 18 42 44 55 94 67
06 12 18 42 44 55 67 94

Master Informatique 																																		14Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Selection Sort: Principles
• Idea: increase the sorted part by adding the minimum of

the unsorted part.
• Initially, the empty segment A[1..0] is sorted and contains

the 0 minimal elements
• Control structure: iteration over j,

find min in A[j..n] and put it into position j
•

Master Informatique 																																		15Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Selection Sort: Abstract Version

INPUT: A[1..n] – an array of integers
OUTPUT: a permutation of A such that A[1] ≤ A[2] ≤ … ≤A[n]

for j := 1 to n-1 do
 // A[1..j-1] is sorted and contains the
 // j-1 minimal elements of the array
 minpos := findMinPos(A,j,n);
 swap(A,j,minpos)

Master Informatique 																																		16Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Selection Sort: Principles
• Idea: increase the sorted part by adding the minimum of

the unsorted part.
• Initially, the empty segment A[1..0] is sorted and contains

the 0 minimal elements
• Control structure: iteration over j,

find min in A[j..n] and put it into position j
• Inner loop: find the min in the rest A[j..n]

Hypothesis: min is A[j], revise during inner loop.
Control structure: iteration

Master Informatique 																																		17Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Selection Sort/2
INPUT: A[1..n] – an array of integers
OUTPUT: a permutation of A such that A[1] ≤ A[2] ≤ … ≤A[n]

for j : = 1 to n-1 do // A[1..j-1] sorted and minimum
 min : = A [j] ; minpos : = j
 for i : = j + 1 to n do
 if A [i] < min then min : = A [i] ; minpos : = i ;
 A[minpos] : = A [j] ; A [j] : = min

Master Informatique 																																		18Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

The number of comparisons is independent of the
original ordering (this is a less natural behavior than
insertion sort):

C = = (n*n - n)/2

Selection Sort/2

∑ j=1

n−1
&n− j '=∑k=1

n−1
k

INPUT: A[1..n] – an array of integers
OUTPUT: a permutation of A such that A[1] ≤ A[2] ≤ … ≤A[n]

for j : = 1 to n-1 do // A[1..j-1] sorted and minimum
 min : = A [j] ; minpos : = j
 for i : = j + 1 to n do
 if A [i] < min then min : = A [i] ; minpos : = i ;
 A[minpos] : = A [j] ; A [j] : = min

Master Informatique 																																		19Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Selection Sort/3
The number of movements is:

Mmin = = 3*(n–1)

Mmax = = (n*n – n)/2 + 3*(n–1)

∑ j=1

n−1
3

∑ j=1

n−1
n− j%3

Master Informatique 																																		20Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Bubble Sort

A
1 nj

1 3 42 5 7 9 8 6

 Strategy
• Start from the back

and compare pairs
of adjacent elements.

• Swap the elements
if the larger comes
before the smaller.

• In each iteration
the smallest element
of the unsorted part
is moved to the beginning
of the unsorted part and the
sorted part grows by one.

44 55 12 42 94 18 06 67
06 44 55 12 42 94 18 67
06 12 44 55 18 42 94 67
06 12 18 44 55 42 67 94
06 12 18 42 44 55 67 94
06 12 18 42 44 55 67 94
06 12 18 42 44 55 67 94
06 12 18 42 44 55 67 94

Master Informatique 																																		21Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Bubble Sort: Principles
• Idea: let small elements move down (= to left).

Effect: initial array segment is sorted.
• Control structure: Initially, the empty array A[1..0] is sorted,

then the sorted part grows by one element per round
=> Iteration

• Sinking down: lesser elements are swapped
with greater ones
=> Iteration

Master Informatique 																																		22Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Bubble Sort
INPUT: A[1..n] – an array of integers
OUTPUT: permutation of A s . t . A[1] ≤ A[2]≤ … ≤ A[n]

for j : = 2 to n do // A[1..j-2] sorted and minimum
 for i : = n downto j do
 if A [i-1] > A [i] then

sw a p (A ,i,i-1)

Master Informatique 																																		23Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Bubble Sort/2
INPUT: A[1..n] – an array of integers
OUTPUT: permutation of A s . t . A[1] ≤ A[2]≤ … ≤ A[n]

for j : = 2 to n do // A[1..j-2] sorted and minimum
 for i : = n downto j do
 if A [i-1] > A [i] then
 val : = A [i-1] ;

A [i-1] : = A [i] ;
 A [i] := val

The number of comparisons is independent of the
original ordering:

C = = (n*n - n)/2∑ j=2

n
&n− j%1'

Master Informatique 																																		24Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Bubble Sort/3
The number of movements is:

Mmin = 0

Mmax = = 3*n*(n - 1)/2

Mavg = = 3*n*(n - 1)/4

∑ j=2

n
3 &n− j%1 '

∑ j=2

n
3 &n− j%1 '/ 2

Master Informatique 																																		25Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Properties of a Sorting Algorithm
• Efficient: has low (worst case) runtime

• In place: needs (almost) no additional space
 (fixed number of scalar variables)

• Adaptive: performs little work if the array is already
 (mostly) sorted

• Stable: does not change the order of elements with
 equal key values

• Online: can sort data as it receives them

Master Informatique 																																		26Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Sorting Algorithms: Properties
Which algorithm has which property?

Adaptive Stable Online

Insertion
Sort Yes Yes Yes

Selection
Sort No Yes, if ... No

Bubble
Sort No No

Master Informatique 																																		27Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Sorting Algorithms: Properties
Which algorithm has which property?

Adaptive Stable Online

Insertion
Sort Yes Yes Yes

Selection
Sort No

Yes
(if we select

the first
minimum)

No

Bubble
Sort No Yes No

Master Informatique 																																		28Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Summary
• Precise problem specification is crucial

• Precisely specify input and output

• Pseudocode, Java, C, … are largely equivalent for our
purposes

• Recursion: procedure/function that calls itself

• Sorting: important problem with classic solutions

	chapter01.1-3
	chapter01.4-sorting

