
Data Structures and Algorithms Spring-Summer 2015/16

Assignment 1 Radityo Eko Prasojo, Werner Nutt,
Rafael Penaloza, Guohui Xiao

1. Array Utility Class1

Instructions: Your assignment should represent your own effort. However, you are not
expected to work alone. It is fine to discuss the exercises and try to find solutions together,
but each student shall write down and submit his/her solutions separately. It is good
academic standard to acknowledge collaborators, so if you worked together with other
students, please list their names.
For a programming task, your solution must contain (i) an explanation of your solution to
the problem, (ii) the Java code, in a form that we can run it, (iii) instructions how to run
it. Also put the source code into your solution document. For all programming tasks, it is
not allowed to use any external libraries (“import”) if not stated otherwise.
Please, include name, student ID and email address in your submission.

1. Implementation of the basic operations of the class ArrayUtility

Implement in Java the class ArrayUtility, which offers basic operations over one-
dimensional and two-dimensional arrays. All methods must be implemented as class
methods (i.e., static methods). The signature of the methods in the ArrayUtility
class are the following:

1. public static int findMax(int[] A, int i, int j): returns the
maximum value occurring in the array A between position i and j.

2. public static int findMaxPos(int[] A, int i, int j): returns
the position of the maximum value in the array A between position i and j.

3. public static int findMin(int[] A, int i, int j): returns the
minimum value in the array A between position i and j.

4. public static int findMinPos(int[] A, int i, int j): return
the position of the minimum value in the array A between position i and j.

5. public static void swap(int[] A, int i, int j): swaps the ele-
ments in position i and j in the array A.

6. public static void shiftRight(int[] A,int i,int j): shifts
to the right all the elements of the array A starting from position i and until position
j (i.e., moves the element in position k to position k + 1 for all i ≤ k < j, and
leaves position i unchanged).

7. public static void shiftLeft(int[] A,int i,int j): shifts to
the left all the elements of the array A, from position j down to position i (i.e.,
moves the element in position k to position k − 1 for all i < k ≤ j, and leaves the
position j unchanged).

1Exercises authored by Valeria Fionda, Mouna Kacimi, Werner Nutt, and Simon Razniewski in the
academic year 2012/13



8. public static int[] createRandomArray(int size, int min,
int max): creates and returns an array of size size, of random elements with
values between min and max (use the Math.random() method of Java!).

9. public static int[][] createRandomMatrix(int rows, int
cols, int min, int max): creates and returns a two-dimensional array
with rows rows and cols columns of random elements with values between min
and max (use the Math.random() method of Java!).

10. public static int[] copyArray(int[] A): returns an array that is a
copy of A.

11. public static int[][] copyMatrix(int[][] A): returns a two-di-
mensional array that is a copy of A.

12. public static int findInArray(int[] A, int q): returns the po-
sition of the number q in the array A (returns −1 if q is not present in A).

13. public static int findInSortedArrary(int[] A, int q): re-
turns a (not the!) position of the number q in the sorted array A (returns −1 if q is
not present in A).

The method assumes that the array A is sorted, it need not be correct if A is not
sorted. Exploit the fact that the array is sorted to find an efficient algorithm. (Re-
member the Google interview questions!)

14. public static int findFirstInSortedArrary(int[] A, int q):
returns the first position where the number q occurs in the sorted array A (returns
−1 if q is not present in A).

As before, the method assumes that the array A is sorted and need not be correct if
A is not sorted. Again, exploit the fact that the array is sorted to find an efficient
algorithm.

(18 Points)

2. Running Time Comparison — Maxsort

Add to your class ArrayUtility two static methods implementing the algorithm
Maxsort, that takes an unsorted array of integer numbers as input and sorts it in descending
order, by repeatedly doing the following:

• first, it searches in the whole array for the greatest element;

• it then puts this element to the beginning of the array;

• then, it searches the whole array excluding the first element for the greatest value,
and puts it to the second position.

Implement the algorithm according to two different strategies:

• By using the method shiftRight(int[] A, int i, int j): if the max-
imum element is found in position j and needs to be put into position i, then (i) shift
A to the right, starting from position i, while remembering the element in position
j that will be overridden; (ii) copy the remembered element to position i.



• By using the method swap(int[] A, int i, int j): if the maximum el-
ement is found in position i and needs to be put into position j, then use swap to
exchange the element in position i with the element in position j.

Then perform tests to find out which of the two implementations is faster.
To perform your measurements, write a test class that

1. creates random arrays of size n = 10, 100, 1000, etc., and

2. for each array created, sorts it using the two implementations of Maxsort and
measures the running times; to measure the running time use the Java method
System.nanoTime() in the following way:

long startTime = System.nanoTime();
... the code being measured ...

long estimatedTime = System.nanoTime()-startTime;

(12 Points)

Deliverables. For each question, hand in the code that you wrote. For Question 2, write
also a short report where you describe your measurements and the results you observed.
Combine all deliverables into one zip file, which you submit via the OLE website of the
course.

Submission: Until Wed, 16 March 2016, 23:55 hrs, to the OLE submission page of

Lab A / Lab B / Lab C

https://ole.unibz.it/mod/assign/view.php?id=11662
https://ole.unibz.it/mod/assign/view.php?id=11663
https://ole.unibz.it/mod/assign/view.php?id=11664

